Answer:
27 m/s
Explanation:
Given:
v₀ = 15 m/s
a = 3 m/s²
t = 4 s
Find: v
v = at + v₀
v = (3 m/s²) (4 s) + (15 m/s)
v = 27 m/s
Answer:
a)ΔV = 6.48 KV
b)ΔU =18.79 mJ
Explanation:
Given that
E= 1.8 KV/m
a)
We know that
Electric potential difference ΔV given as
ΔV = E .d
Here
E= 1.8 KV/m
d= 3.6 m
ΔV = E .d
ΔV = 1.8 x 3.6 KV
ΔV = 6.48 KV
b)
Given that
q=+2.90 µC
Change in electric potential energy ΔU given as
ΔU = q .ΔV
ΔU =18.79 mJ
The kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
To find the answer, we have to know about the Lorentz transformation.
<h3>What is its kinetic energy as measured in the Earth reference frame?</h3>
It is given that, an alien spaceship traveling at 0.600 c toward the Earth, in the same direction the landing craft travels with a speed of 0.800 c relative to the mother ship. We have to find the kinetic energy as measured in the Earth reference frame, if the landing craft has a mass of 4.00 × 10⁵ kg.
- Let us consider the earth as S frame and space craft as S' frame, then the expression for KE will be,
- So, to find the KE, we have to find the value of speed of the approaching landing craft with respect to the earth frame.
- We have an expression from Lorents transformation for relativistic law of addition of velocities as,
- Substituting values, we get,
Thus, we can conclude that, the kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.
Learn more about frame of reference here:
brainly.com/question/20897534
SPJ4
Answer:
Velocity = 4.33[m/s]
Explanation:
The total energy or mechanical energy is the sum of the potential energy plus the kinetic energy, as it is known the velocity and the height, we can determine the total energy.
All this energy will become kinetic energy and we can find the velocity.
Answer:
Sounds cool.. but what do they do?
Explanation: