Explanation:
Sodium has 1 electron in its outermost shell, and chlorine has 7 electrons. It is easiest for sodium to lose its electron and form a +1 ion, and for chlorine to gain an electron, forming a -1 ion.
<em>Now ionic bonds areIons are formed by atoms that have non-full outermost electron shells in order to become more like the noble gases in Group 8 of the Periodic Table,</em>
<em>Now ionic bonds areIons are formed by atoms that have non-full outermost electron shells in order to become more like the noble gases in Group 8 of the Periodic Table,Some atoms add electrons to get a full shell, thus becoming a negative ion. Other atoms subtract electrons from their outermost shell, leaving a full </em><em>shell and an overall positive charge..</em>
<em>shell and an overall positive charge..therefore it is an</em> ionic bond
Answer:
A
Explanation:
B and D have to do with plants
and C has nothing to do with cellular resporation.
Answer:
In this chemical reaction, which is considered irreversible, that is why the reaction arrow is ONE and unidirectional and not two in opposite directions, which means reversibility of the reaction.
In summary, if we look closely at the reaction, we observe that the stoichiometric values are balanced in the reaction, therefore there is THE SAME AMOUNT OF REAGENTS AS PRODUCTS.
This phenomenon has to be met in ALL CHEMICAL REACTIONS, the stoichiometric balance is essential for this reaction to be well expressed.
Why is stoichiometric balance so important? Why we indicate that we have the same amount of reagents as products, means that NOTHING IS LOST, EVERYTHING IS TRANSFORMED in the matter of the organic compounds that reacted.
Explanation:
Although if we observe the stoichiometric values well they are not correct with respect to oxygen, therefore it would be necessary to correct that in the chemical reaction, but above we briefly explain why the balancing of the reactions and the relationship they have with the conservation of the mass.
The law of conservation of mass indicates that mass is never lost, but is transformed, like energy, considering that it happens in terrestrial life.