Answer:
13.5 g
Explanation:
This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.
Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.
number of moles = n = mass of Al / Atomic Weight Al
⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹
= 13.5 g
We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.
An acid is an ionic compound that produces positive hydrogen ions when dissolved in water. Acids taste sour and turn blue litmus paper red. A base is an ionic compound that produces negative hydroxide ions when dissolved in water. Bases taste bitter and turn red litmus paper blue.
Answer:
B₂
Explanation:
The limiting reactant is always a reactant. You can determine which reactant is limiting by identifying which has the smaller mole-to-mole ratio with the product. This ratio can be found via the coefficients of the balanced reaction.
4 A₂ + 3 B₂ ---> 6 AB
4 moles A₂
------------------ = mole-to-mole ratio A₂/AB
6 moles AB
3 moles B₂
------------------ = mole-to-mole ratio B₂/AB
6 moles AB
Since the mole-to-mole ratio between B₂ and AB is smaller, B₂ must be the limiting reactant.
<h3>
Answer:</h3>
5.2 mol H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 6HCl + Fe₂O₃ → 2FeCl₃ + 3H₂O
[Given] 10.4 mol HCl
<u>Step 2: Identify Conversions</u>
[RxN] 6 mol HCl = 3 mol H₂O
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

Answer:
compound, but I could be wrong