Tap water used for drinking is considered in the DIL calculations; true
39.96 g product form when 16.7 g of calcium metal completely reacts.
<h3>What is the stoichiometric process?</h3>
Stoichiometry is a section of chemistry that involves using relationships between reactants and/or products in a chemical reaction to determine desired quantitative data.
Equation:
→ 
In this case, for the undergoing reaction, we can compute the grams of the formed calcium chloride by noticing the 1:1 molar ratio between calcium and it (stoichiometric coefficients) and using their molar mass of 40 g/mol and 111 g/mol by using the following stoichiometric process:
= 16.7 g Ca x
x
x 
= 39.96 g
Hence, 39.96 g product form when 16.7 g of calcium metal completely reacts.
Learn more about the stoichiometric process here:
brainly.com/question/15047541
#SPJ1
His measurements are precise since his pH values are close to each other in a way that it was repeated in all measurements. On the contrary to accuracy, it is the closeness to the actual pH value he should have achieved. Therefore, Jose's results are precise but not accurate since his value is not close to the actual value of pH 4.
1 mole of any substance contains 6.022 × 1023 particles.
⚛ 6.022 × 1023 is known as the Avogadro Number or Avogadro Constant and is given the symbol NA
N = n × NA
· N = number of particles in the substance
· n = amount of substance in moles (mol)
· NA = Avogardro Number = 6.022 × 10^23 particles mol-1
For H2O we have:
2 H at 1.0 each = 2.0 amu
1 O at 16.0 each = 16.0 amu
Total for H2O = 18.0 amu, or grams/mole
It takes 18 grams of H2O to obtain 1 mole, or 6.02 x 1023 molecules of water. Think about that before we answer the question. We have 25.0 grams of water, so we have more than one mole of water molecules. To find the exact number, divide the available mass (25.0g) by the molar mass (18.0g/mole). Watch how the units work out. The grams cancel and moles moves to the top, leaving moles of water. [g/(g/mole) = moles].
Here we have 25.0 g/(18.0g/mole) = 1.39 moles water (3 sig figs).
Multiply 1.39 moles times the definition of a mole to arrive at the actual number of water molecules:
1.39 (moles water) * 6.02 x 1023 molecules water/(mole water) = 8.36 x 1023 molecules water.
That's slightly above Avogadro's number, which is what we expected. Keeping the units in the calculations is annoying, I know, but it helps guide the operations and if you wind up with the unit desired, there is a good chance you've done the problem correctly.
N = n × (6.022 × 10^23)
1 grams H2O is equal to 0.055508435061792 mol.
Then 23 g of H2O is 1.2767 mol
To calculate the number of particles, N, in a substance:
N = n × NA
N = 1.2767 × (6.022 × 10^23)
N= 176.26
N=
The hydrogens and oxygen of a water molecule are held together by covalent bond