Hydrogen bonds are not like covalent bonds. They are nowhere near as strong and you can't think of them in terms of a definite number like a valence. Polar molecules interact with each other and hydrogen bonds are an example of this where the interaction is especially strong. In your example you could represent it like this:
<span>H2C=O---------H-OH </span>
<span>But you should remember that the H2O molecule will be exchanging constantly with others in the solvation shell of the formaldehyde molecule and these in turn will be exchanging with other H2O molecules in the bulk solution. </span>
<span>Formaldehyde in aqueous solution is in equilibrium with its hydrate. </span>
<span>H2C=O + H2O <-----------------> H2C(OH)2</span>
Answer: chlorophyll
Explanation:
The substance that plants use to capture light energy from the sun is referred to as chlorophyll.
The chlorophyll is a colored pigment that is used by the plants for photosynthesis. The function of the chlorophyll is that it absorbs the energy from the sun which is then turned into a chemical energy.
It should be for the total solution of 93 plus 20 grams which is 113 grams so 93 divided by 113 grams comes to 82.3% sodium sulfate and this can be checked by multiplying 113 grams by 0.823 which results in 93 grams of sodium sulphate.
Pressure on the inside of the balloon was greater than the pressure on the outside of the balloon so it pushed out until the pressures equalized.