Answer: The energy of activation for the chirping process is 283.911 kJ/mol
Explanation:
According to the Arrhenius equation,

The expression used with catalyst and without catalyst is,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate of reaction at
= 194/min
= rate of reaction at
= 47.6 /min
= activation energy
R = gas constant = 8.314 J/Kmol
tex]T_1[/tex] = initial temperature = 
tex]T_1[/tex] = final temperature = 
Now put all the given values in this formula, we get
![\frac{194}{47.6}=\frac{E_a}{2.303\times 8.314}[\frac{1}{278}-\frac{1}{301}]](https://tex.z-dn.net/?f=%5Cfrac%7B194%7D%7B47.6%7D%3D%5Cfrac%7BE_a%7D%7B2.303%5Ctimes%208.314%7D%5B%5Cfrac%7B1%7D%7B278%7D-%5Cfrac%7B1%7D%7B301%7D%5D)

Thus the energy of activation for the chirping process is 283.911 kJ/mol
Answer: hope this helps
To make molar NaCl solutions of other concentrations dilute the mass of salt to 1000ml of solution as follows:
0.1M NaCl solution requires 0.1 x 58.44 g of NaCl = 5.844g.
0.5M NaCl solution requires 0.5 x 58.44 g of NaCl = 29.22g.
2M NaCl solution requires 2.0 x 58.44 g of NaCl = 116.88g.
Explanation:
True because it has more power than coal burning
From the information in the question, the E° and E for the cell is 0.00 V and 0.12 V.
Using the Nernst equation;
Ecell = E°cell - 0.0592/n log Q
We know that E°cell = 0.00 V since the anode and cathode are both made up of cadmium.
Substituting the given values into the Nernst equation;
Ecell = 0.00 V - 0.0592/2 log (1.0 × 10-5 M/0.100 M)
Ecell = 0.00 V - 0.0296 log(1 × 10^-4)
Ecell = 0.12 V
Learn more: brainly.com/question/8646601