Coordination number has to do with the number of ligands that is attched to the central metal atom/ion.
<h3>What is coordination number?</h3>
The term coordination number has to do with the number of ligands that is attched to the central metal atom/ion. The coordination sphere contains this central metal along with associated ligands.
The question is incomplete. However, if I have something like, K3[Cr(H2O)6], the coordination number of the complex is six.
Learn mlore about coordination number: brainly.com/question/16236454
<span>Dry ice is frozen carbon dioxide. It is easy to assume that the fog surrounds dry ice is carbon dioxide returning to it's gaseous however, you can not see that process. The vapors you see is the water molecules in the air condensing as a result of the cooling or energy removal by the dry ice. When energy is removed from water molecules they become colder and move slower than water in a gaseous. Similar to clouds in the air, the water condenses into a form that you can see.</span>
Answer:
1.13 M
Explanation:
Given data
- Mass of luminol (solute): 15.0 g
- Volume of solution = volume of water = 75.0 mL = 0.0750 L
- Molar mass of luminol: 177.16 g/mol
The molarity of the stock solution of luminol is:
M = mass of solute / molar mass of solute × liters of solution
M = 15.0 g / 177.16 g/mol × 0.0750 L
M = 1.13 M
Answer:
a. pH paper can tell you the pH. pH paper only can turn a variety of colors that represent different pH numbers.
B. Litmus paper only tells you acid or base in order to turns red or blue color.
Explanation:
pH paper is a type of paper which is used for the identification of pH of the substance. On pH paper, colors are present which shows pH numbers of a solution while litmus paper is a type of paper which is used for the identification of solution whether it is acidic or basic. There are two colors i. e. Red and Blue. If the litmus paper turns red, the solution is acidic or if the litmus paper turns blue, the solution is alkaline or basic.
Answer:
A . y = x²
Explanation:
The equation that represents the relationship between x and y in the table is that of A which is y = x².
As we can see from the table, at every instance of x, y is always a square of this variable.
If x = 0, y = 0² = 0
x = 1, y = 1² = 1
x = 2, y = 2² = 4
So y = x²