Molarity = moles / liter
a) M = 2/4 = 0.5 M
b) Moles = 4/(30 + 16 + 1)
= 0.085
M = 0.085 / 2 = 0.0425 M
c) Moles = 5.85 / (23 + 35.5)
= 0.1
M = 0.1 / 0.4
= 0.25 M
Formic acid when in water would dissociate into ions just like any acids. It would dissociate into the hydrogen ion and the formate ion. The equilibrium dissociation equation would be written as:
<span>HCOOH (aq) + H2O (l) ⇌ H+ (aq) + HCOO- (aq)
Formic acid is a weak acid which means that when in aqueous solution it does not completely dissociate into its corresponding ions. Only a certain amount that would be dissociated so in the solution there will be HCOOH, HCOO- and H+ molecules. It is also known as Methanoic acid and an important substance for the synthesis of a number of substances. It is naturally occurring in ants.</span>
Answer:
the atomic particles in the necluse are called ions which are positive and negive charged atoms
Explanation:
a skate border? i think ?
Answer:
cesium
In particular, cesium (Cs) can give up its valence electron more easily than can lithium (Li). In fact, for the alkali metals (the elements in Group 1), the ease of giving up an electron varies as follows: Cs > Rb > K > Na > Li with Cs the most likely, and Li the least likely, to lose an electron
Explanation: