The magnitude of the electric field on the master charge is 1.008 x 10¹⁰ N/C, and the force on the test charge is 5.04 x 10⁹ N.
<h3>Electric field on the master charge</h3>
E = kq/r²
where;
- q is magnitude of master charge
- r is distance of separation
- k is Coulomb's constant
E = (9 x 10⁹ x 0.63)/(0.75²)
E = 1.008 x 10¹⁰ N/C
<h3>Force on the test charge</h3>
F = Eq
where;
- E is electric field
- q is the test charge
F = (1.008 x 10¹⁰) x (0.5)
F = 5.04 x 10⁹ N
Thus, the magnitude of the electric field on the master charge is 1.008 x 10¹⁰ N/C, and the force on the test charge is 5.04 x 10⁹ N.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
The property that compares the mass of an object with its volume is density.
Answer:
option (B) is the correct option.
please thanks me and follow me
Answer:
it can cause wear and tear and reduces efficiency as energy is lost.
Explanation:
The total resistance is 420 ohm.
A circuit with resistive elements of 220, 100, 57, and 43 produce what total resistance
R= 220+ 100+ 57+ 43
= 420 Ω
What is resistance and its types?
Resistance is a measure of the opposition to current flow in an electrical circuit also known as ohmic resistance or electrical resistance. Ohms are measured as resistance, symbolized by the Greek letter omega (Ω). The ratio of the applied voltage to the current through the material is then known as resistance.
What causes resistance?
An electric current flows when electrons move through a conductor, such as a metal wire. The moving electrons can collide with the ions in the metal. This makes it more difficult for the current to flow, and causes resistance.
Learn more about resistance:
brainly.com/question/17563681
#SPJ4