Option D is correct. The speed at which the earth's surface moves because of the earth's rotation will then be equivalent to -10³ km/hr
Speed is a body is defined as the ratio of the distance with respect to the time taken by the body. Mathematically:
Speed = Distance/Time
GIven the following
Distance = 104km/hr
If it is 6:00 p.m. in New York, it is 7:00 a.m. of the next day of the week in Tokyo, this means that the time difference between New York and Tokyo is 11 hours.
Time = -11 hours
Get the required speed
Speed = 104/-11
Speed = -9.454545
Speed = -10km/hr
The speed at which the earth's surface moves because of the earth's rotation will then be equivalent to -10³ km/hr
Learn more here: brainly.com/question/2583051
Explanation:
Given that,
Mass if the rock, m = 1 kg
It is suspended from the tip of a horizontal meter stick at the 0-cm mark so that the meter stick barely balances like a seesaw when its fulcrum is at the 12.5-cm mark.
We need to find the mass of the meter stick. The force acting by the stone is
F = 1 × 9.8 = 9.8 N
Let W be the weight of the meter stick. If the net torque is zero on the stick then the stick does not move and it remains in equilibrium condition. So, taking torque about the pivot.

W = 3.266 N
The mass of the meters stick is :

So, the mass of the meter stick is 0.333 kg.
Explanation:
If the stones are unloaded from the boat, the weight of the boat will decrease. Therefore, the volume of the water displaced by the boat will also decrease. Due to this, the volume of the boat immersed in the water decreases. Hence, the level of the water around the boat will decrease.
You're walking in one direction, and then the exact opposite of that direction, so you simply have to subtract the two distances.
200-150=50
You're 50 meters west of where you originally started.
You're west because 200 meters west is greater than 150 meters east. If the distance walked east was greater than the distance walked west, you would've been east of your starting position.
Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.