Answer:
S = 16 m
Explanation:
Given that
The frequency of the water waves, f = 4 Hz
The wavelength of the water waves, λ = 2 m
The time the waves reached the shore, t = 2 s
The relation between the velocity, wavelength, and the frequency of the wave is given by the relation,
v = f λ m/s
Substituting the given values in the above equation,
v = 4 x 2
= 8 m/s
The velocity of the water waves is v = 8 m/s
The distance between the shore and boat is given by
s = v x t
= 8 x 2
= 16 m
Hence, the distance between the boat and the shore is, s = 16 m
There is no apparatus for it. It is either use something like ruler and table and rub together or rub our hands, and friction force will be showed.
Answer:
Try a Cold Pack. Use a Heating Pad or Hot Compress. Ease Pressure on Your Scalp or Head. Dim the Lights. Try Not to Chew. Hydrate. Get Some Caffeine. Practice Relaxation.
Answer:
Explanation:
Let l be th length of pendulum
loss of height
= mg ( l - l cos50)
= mg l ( 1-cos50)
1/2 mv² = mgl ( 1-cos50)
v = √[2gl( 1- cos50)]
= √( 2 x 9.8 x .7 x ( 1-cos50)
= 2.2 m / s
speed at the bottom = 2.2 m /s
b )
centripetal acceleration
= v² / r
= 2.2 x 2.2 / .7
= 6.9 m /s²
C )
If T be the tension
T - mg = mv² / r
T = mg + mv² / r
= .13 X 9.8 + .13 X 6.9
= 2.17 N