The first factor is wind speed, the second factor is wind duration, and the last factor is the fetch, the distance over which the wind blows without a change in direction.
all these factors determines the strength of a wave.
hope this helps :)
Answer:
making sure that you change one factor at a time while keeping all other conditions the same
Explanation:
Fundamental frequency,
f=v2l=T/μ−−−−√2l
=(50)/0.1×10−3/10−22×0.6−−−−−−−−−−−−−−−−−−−√
=58.96Hz
Let, n th harmonic is the hightest frequency, then
(58.93)n = 20000
∴N=339.38
Hence, 339 is the highest frequency.
∴fmax=(339)(58.93)Hz=19977Hz.
<h3>
What is frequency?</h3>
In physics, frequency is the number of waves that pass a given point in a unit of time as well as the number of cycles or vibrations that a body in periodic motion experiences in a unit of time. After moving through a sequence of situations or locations and then returning to its initial position, a body in periodic motion is said to have experienced one cycle or one vibration. See also simple harmonic motion and angular velocity.
learn more about frequency refer:
brainly.com/question/254161
#SPJ4
Evidence: Data gathered
Experiment: Looking through a telescope
Observations: Testing what happens
Reasoning: Thinking a problem through
I believe that these should be correct.
Hoping you pass!
Velocity of an object is its rate of change of the object's position per interval of time. Velocity is a vector quantity which means that it consists of a magnitude and a direction. Magnitude is represented by the speed and the direction is represented by the angle. To determine the velocity components, we use trigonometric functions to determine the angle of the components. For the north component we, use the sine function while, for the west component, we use the cosine function. We calculate as follows:
north velocity component = (16.8 m/s) (sin 54°) = 16.4 m/s
<span>west velocity component = (16.8 m/s) (cos 54°) = 3.49 m/s</span>