Errrrr, it has 80.
80 is the correct answer
Answer:
Apply the following formulae horizontally And get A value for time
Remember horizontal acceleration is zero

and then to find the height apply the same above equation vertically...remember vertical initial velocity is zero

Answer:
28,400 N
Explanation:
Let's start by calculating the pressure that acts on the upper surface of the hatch. It is given by the sum of the atmospheric pressure and the pressure due to the columb of water, which is given by Stevin's law:

On the lower part of the hatch, there is a pressure equal to

So, the net pressure acting on the hatch is

which acts from above.
The area of the hatch is given by:

So, the force needed to open the hatch from the inside is equal to the pressure multiplied by the area of the hatch:

Answer:
Vy = 26 m/s sin 30 = 13 m/s vertical speed
t = Vy / a = 13 m/s / 9.80 m/s^2 = 1.33 sec time to reach Vy = 0
H = Vy t + 1/2 g t^2
H = 13 m/s * 1.33 sec - 1.33^2 * 9.8 / 2 m = 8.62 m
Answer:
Tt = 70 + 135e^-0.031t
13 minutes
Explanation:
Given that :
Initial temperature, Ti = 205°
Temperature after 2.5 minutes = 195°
Temperature of room, Ts= 70
Using the relation :
Tt = Ts + Ce^-kt
Temperature after time, t
When freshly poured, t = 0
205 = 70 + Ce^-0k
205 = 70 + C
C = 205 - 70 = 135°
T after 2.5 minutes to find proportionality constant, k
Tt = Ts + Ce^-kt
195 = 70 + 135e^-2.5k
125 = 135e^-2.5k
125 / 135 = e^-2.5k
0.9259 = e^-2.5k
Take In of both sides :
−0.076989 = - 2.5k
k = −0.076989 / - 2.5
k = 0.031
Equation becomes :
Tt = 70 + 135e^-0.031t
t when Tt = 160
160 = 70 + 135e^-0.031k
90 = 135e^-0.031t
90/135 = e^-0.031t
0.6667 = e^-0.031t
In(0.6667) = - 0.031t
−0.405465 = - 0.031t
t = 0.405465/ 0.031
t = 13.071
t = 13 minutes