Answer:
E) True. The girl has a larger tangential acceleration than the boy.
Explanation:
In this exercise they do not ask us to say which statement is correct, for this we propose the solution to the problem.
Angular and linear quantities are related
v = w r
a = α r
the boy's radius is r₁ = 1.2m the girl's radius is r₂ = 1.8m
as the merry-go-round rotates at a constant angular velocity this is the same for both, but the tangential velocity is different
v₁ = w 1,2 (boy)
v₂ = w 1.8 (girl)
whereby
v₂> v₁
reviewing the claims we have
a₁ = α 1,2
a₂ = α 1.8
a₂> a₁
A) False. Tangential velocity is different from zero
B) False angular acceleration is the same for both
C) False. It is the opposite, according to the previous analysis
D) False. Angular acceleration is equal
E) True. You agree with the analysis above,
A) 1973 I believe it had something to do with the Arab wars happening at the time
<span>How many electrons would it take to equal the mass of a proton:
Here's one way of finding the value of it:
=> number of electrons is equivalent to 1 proton.
Let's have an example.
1.6726*10 -24g
_______________
1 proton
______________
9.109*10- ^28g
_______________
1 electron
Based on the given example above, the electrons is 1 839 per 1 proton.
It's about 1800 electrons/proton.</span>
Answer:
You can listen to music while doing either one, or you can get someone else to help you that way you have someone to talk to also you finish faster.
Answer:
J = 14.4 kg*m^2
Explanation:
Assuming that the wheel is not moving anywhere, and the kinetic energy is only due to rotation:
Ek = 1/2 * J * w^2
J = 2 * Ek / (w^2)
We need the angular speed in rad / s
566 rev/min * (1 min/ 60 s) * (2π rad / rev) = 58.22 rad/s
Then:
J = 2 * 24400 / (58.22^2) = 14.4 kg*m^2