To solve this problem we will apply the concepts related to Reyleigh's criteria. Here the resolution of the eye is defined as 1.22 times the wavelength over the diameter of the eye. Mathematically this is,

Here,
D is diameter of the eye


The angle that relates the distance between the lights and the distance to the lamp is given by,

For small angle, 
Here,
d = Distance between lights
L = Distance from eye to lamp
For small angle 
Therefore,



Therefore the distance is 5.367km.
I love science! if you need any more help let me know i cant guarantee i can help but i will try!
The correct answer is "Some substances must be dissolved in water before they can be used".
Answer:
The gravitational acceleration of the planet is, g = 8 m/s²
Explanation:
Given data,
The distance the object falls, s = 144 m
The time taken by the object is, t = 6 s
Using the III equations of motion
S = ut + ½ gt²
∴ g = 2S/t²
Substituting the given values,
g = 2 x 144 /6²
= 8 m/s²
Hence, the gravitational acceleration of the planet is, g = 8 m/s²
Answer:
The pressure at point 2 is 
Explanation:
From the question we are told that
The speed at point 1 is 
The gauge pressure at point 1 is 
The density of water is 
Let the height at point 1 be
then the height at point two will be

Let the diameter at point 1 be
then the diameter at point two will be

Now the continuity equation is mathematically represented as

Here
are the area at point 1 and 2
Now given that the are is directly proportional to the square of the diameter [i.e
]
which can represent as

=> 
where c is a constant
so 
=> 
=> 
Now from the continuity equation
=>
=>

Generally the Bernoulli equation is mathematically represented as

So
=> 
substituting values

