1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
2 years ago
6

The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 2.00

103 N with an effective perpendicular lever arm of 3.40 cm, producing an angular acceleration of the forearm of 165 rad/s2. What is the moment of inertia of the boxer's forearm
Physics
1 answer:
laila [671]2 years ago
7 0

Answer: The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 2.00 103 N with an effective perpendicular lever arm of 3.40 cm, producing an angular acceleration of the forearm of 165 rad/s2. Then, the moment of inertia of the boxer's forearm will be 0.412Nm/rad/sec2.

Explanation: To find the correct answer, we have to know more about the moment of force or torque.

<h3>What is Torque?</h3>
  • Torque is the measure of turning effect of a force.
  • If the object rotates about an axis, then the perpendicular distance from the axis to the line of action of the force is called the lever arm.
  • Torque is measured by the product of force and the lever arm.
  • If r is the position vector of the point of application of force, then torque T is,

                        T=rFsin\alpha, where, \alpha will be the angle between r and F.

  • Torque in terms of moment of inertia I and the angular acceleration \beta will be,

                                   T=I\beta

                     Where,  I=r×m

<h3>How to solve the problem?</h3>
  • Given that,  

                  F=2*10^3N\\r=3.40*10^-2m\\\beta =165 rad/sec^2

  • From the above equation of T, we can produce the equation of moment of inertia as,

                          I=\frac{T}{\beta } =\frac{rFsin\alpha }{\beta } \\where, sin\alpha =1.\\Thus,\\T=\frac{rF}{\beta } =\frac{68}{165} =0.412Nm/rad/s^2.

Thus, we can conclude that, moment of inertia of the boxer's forearm will be, 0.412Nm/rad/sec².

Learn more about the Torque here:

brainly.com/question/28044611

#SPJ4

You might be interested in
hi everyone im learning about zodiac signs can u plz share urs and somethings u like to for ex im an aquarius and i sing and lik
maksim [4K]

Answer: Aquarius!!!!

Explanation:

6 0
3 years ago
Read 2 more answers
What type of bond results from the side‑on overlap of orbitals?
Serga [27]

Answer:

A pi bond

Explanation:

A pi bond is a type of covalent bond that results from the formation of a molecular orbital by the side-to-side overlap of atomic orbitals along a plane perpendicular to a line connecting the nuclei of the atoms.

4 0
3 years ago
A center-seeking force related to acceleration is _______ force
34kurt
A because centrifugal is to velocity to how slow or fast something is  and centrifugal has expresssed as ac=v2 / r (1)<span />
5 0
3 years ago
Read 2 more answers
A starship blasts past the earth at 2.0*10^8 m/s .Just after passing the earth, the starship fires a laser beam out its back of
Vilka [71]

Answer:

at the speed of light (c=3.0\cdot 10^8 m/s)

Explanation:

The second postulate of the theory of the special relativity from Einstein states that:

"The speed of light in free space has the same value c in all inertial frames of reference, where c=3.0\cdot 10^8 m/s"

This means that it doesn't matter if the observer is moving or not relative to the source of ligth: he will always observe light moving at the same speed, c.

In this problem, we have a starship emitting a laser beam (which is an electromagnetic wave, so it travels at the speed of light). The startship is moving relative to the Earth with a speed of 2.0*10^8 m/s: however, this is irrelevant for the exercise, because according to the postulate we mentioned above, an observer on Earth will observe the laser beam approaching Earth with a speed of c=3.0\cdot 10^8 m/s.

7 0
3 years ago
Which type of energy increases when an object’s atoms move faster? A.nuclear B.mechanical C.chemical D.thermal
erica [24]
When an object's atoms move faster, its thermal energy increases and the object becomes warmer.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Calculate the acceleration of a 3000 kg truck that had a net force of 500 N applied to it. Express your answer in m/s^2???
    9·1 answer
  • In a loop-the-loop ride a car goes around a vertical, circular loop at a constant speed. The car has a mass m = 268 kg and moves
    11·1 answer
  • -g With what tension must a rope with length 2.50 m and mass 0.120 kg be stretched for transverse waves of frequency 40.0 Hz to
    6·1 answer
  • U-235 releases an average of 2.5 neutrons per fission, while Pu-239 releases an average of 2.7 neutrons per fission. Which of th
    12·1 answer
  • A 2.0 kg pendulum has an initial total energy of 20 J. Calculate the energy lost as heat if the pendulum is 0.10 m high and is t
    11·1 answer
  • Explain how an iron needle can become magnetized...
    12·1 answer
  • Question 5
    6·1 answer
  • Tasks
    7·1 answer
  • A student listed the characteristics of a type of rock in her notes.
    15·1 answer
  • If you drop an object, it will accelerate downward at a rate of 9.8 meters per second per second. if you instead throw it downwa
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!