The dog runs 300240 miles.
<h3>What is the rate?</h3>
Rate refers to the pace at which something happens. We know that the easiest way to obtain the rate is by the use of proportion. Now we have been told that the dog is able to run 500 miles in 12 seconds.
If the dog runs 500 miles in 12 seconds
The dog runs x miles in 1 second
x = 500 * 1/12
x = 41.7 miles
In two hours we have 2 * 60 * 60 = 7200 seconds
If the dog runs 41.7 miles in 1 second
The dog runs x miles in 7200 seconds
x = 41.7 miles * 7200 seconds/ 1 second
x = 300240 miles
Learn more about proportion:brainly.com/question/2548537
#SPJ1
Answer:
The ratio of electric force to the gravitational force is 
Explanation:
It is given that,
Distance between electron and proton, 
Electric force is given by :

Gravitational force is given by :

Where
is mass of electron, 
is mass of proton, 
is charge on electron, 
is charge on proton, 



So, the ratio of electric force to the gravitational force is
. Hence, this is the required solution.
Measuring spoons are used when measuring less than 1/4 cup
Answer:
52.49 Kg
Explanation:
Let m1 and v1 denote your mass and velocity respectively
Let m2 and v2 denote your friends mass and velocity respectively
Kinetic energy is given by
Since your kinetic energies are the same hence
and making m2 the subject then
Since v2 is v1+0.28v1=1.28v1
Substituting m1 for 86 Kg
Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².
The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is
<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²
<em>F</em> ≈ 9.81 N
Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.
This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
i.e. 1/4 of the weight on Earth, which would be about 2.45 N.