Answer:
ans:
tenson(T) = 20 N
acceleration (a) = 2.86 m/s
Explanation:
T + mg = Mg
T = Mg - mg
T = g( M - m )
T = 10× ( 7-5 )
T = 20 N
again;
T = 20
Ma = 20
a = 20 / 7
= 2.86 m/s
The frequency f of a wave is defined as the inverse of the period T:

The clock in the problem has a waveform with period

. Therefore, its frequency is
About 5 billion years ago
Answer:
the diameter of the outside edge of the receiver is 
Explanation:
From the schematic free body diagram illustrating what the question is all about below;
Let represent A to be the vertex where the receiver is being placed
S to be the focus
BP to be equal to r (i.e radius of the outer edge)
BC to be 2 r (i.e the diameter)
Given that AS = 4 in and AP is 18 in
Let AP be x- axis and AY be y -axis
A=(0,0)
S=(4,0) = (0,0)
So that the equation of the parabolic path of the receiver will be:

B = (AP, BP)
B = (18, r)
B lies y² = 16 x
r² = 16 x
r² 16 × 18

Diameter BC = 2r

U can try to use capacitor , the value of capacitor depends on circuit
ripple factors signifies the ac components, by def its ratio of rms value of ac component to value of dc component
so in order to reduce use of a capacitor which denies the sudden changes in voltage, which is the charracteristic of Ac signals
hope this helps