1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kisachek [45]
4 years ago
10

A satellite is in a circular orbit around Mars, which has a mass M = 6.40 × 1023 kg and radius R = 3.40 ×106 m.

Physics
1 answer:
Pepsi [2]4 years ago
5 0

Answer:

a) The orbital speed of a satellite with a orbital radius R (in meters) will have an orbital speed of approximately \displaystyle \sqrt\frac{4.27 \times 10^{13}}{R}\; \rm m \cdot s^{-1}.

b) Again, if the orbital radius R is in meters, the orbital period of the satellite would be approximately \displaystyle 9.62 \times 10^{-7}\, R^{3/2}\; \rm s.

c) The orbital radius required would be approximately \rm 2.04 \times 10^7\; m.

d) The escape velocity from the surface of that planet would be approximately \rm 5.01\times 10^3\; m \cdot s^{-1}.

Explanation:

<h3>a)</h3>

Since the orbit of this satellite is circular, it is undergoing a centripetal motion. The planet's gravitational attraction on the satellite would supply this centripetal force.

The magnitude of gravity between two point or spherical mass is equal to:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}},

where

  • G is the constant of universal gravitation.
  • M is the mass of the first mass. (In this case, let M be the mass of the planet.)
  • m is the mass of the second mass. (In this case, let m be the mass of the satellite.)  
  • r is the distance between the center of mass of these two objects.

On the other hand, the net force on an object in a centripetal motion should be:

\displaystyle \frac{m \cdot v^{2}}{r},

where

  • m is the mass of the object (in this case, that's the mass of the satellite.)
  • v is the orbital speed of the satellite.
  • r is the radius of the circular orbit.

Assume that gravitational force is the only force on the satellite. The net force should be equal to the planet's gravitational attraction on the satellite. Equate the two expressions and solve for v:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}} = \frac{m \cdot v^{2}}{r}.

\displaystyle v^2 = \frac{G \cdot M}{r}.

\displaystyle v = \sqrt{\frac{G \cdot M}{r}}.

Take G \approx 6.67 \times \rm 10^{-11} \; m^3 \cdot kg^{-1} \cdot s^{-2},  Simplify the expression v:

\begin{aligned} v &= \sqrt{\frac{G \cdot M}{r}} \cr &= \sqrt{\frac{6.67 \times \rm 10^{-11} \times 6.40 \times 10^{23}}{r}} \cr &\approx \sqrt{\frac{4.27 \times 10^{13}}{r}} \; \rm m \cdot s^{-1} \end{aligned}.

<h3>b)</h3>

Since the orbit is a circle of radius R, the distance traveled in one period would be equal to the circumference of that circle, 2 \pi R.

Divide distance with speed to find the time required.

\begin{aligned} t &= \frac{s}{v} \cr &= 2 \pi R}\left/\sqrt{\frac{G \cdot M}{R}} \; \rm m \cdot s^{-1}\right. \cr &= \frac{2\pi R^{3/2}}{\sqrt{G \cdot M}} \cr &\approx  9.62 \times 10^{-7}\, R^{3/2}\; \rm s\end{aligned}.

<h3>c)</h3>

Convert 24.6\; \rm \text{hours} to seconds:

24.6 \times 3600 = 88560\; \rm s

Solve the equation for R:

9.62 \times 10^{-7}\, R^{3/2}= 88560.

R \approx 2.04 \times 10^7\; \rm m.

<h3>d)</h3>

If an object is at its escape speed, its kinetic energy (KE) plus its gravitational potential energy (GPE) should be equal to zero.

\displaystyle \text{GPE} = -\frac{G \cdot M \cdot m}{r} (Note the minus sign in front of the fraction. GPE should always be negative or zero.)

\displaystyle \text{KE} = \frac{1}{2} \, m \cdot v^{2}.

Solve for v. The value of m shouldn't matter, for it would be eliminated from both sides of the equation.

\displaystyle -\frac{G \cdot M \cdot m}{r} + \frac{1}{2} \, m \cdot v^{2}= 0.

\displaystyle v = \sqrt{\frac{2\, G \cdot M}{R}} \approx 5.01\times 10^{3}\; \rm m\cdot s^{-1}.

You might be interested in
Describe what is happening to the speed during the period (I). 0s - 10s __________________________________________________ (II).
aleksley [76]

Answer:

- There was a constant acceleration at 0 to 10s

- There was a zero acceleration at 10 to 25s

- There was a constant deceleration at 25 to 30s

Explanation:

<em>See attachment for complete question.</em>

Solving (a): What happens at 0s to 10s

There was a constant acceleration and this is proven below.

At time 0, velocity = 15

At time 10, velocity = 30

This is represented as:

(t_1,v_1) = (0,15)

(t_2,v_2) = (10,30)

Acceleration (A) is the rate of change of velocity against time.

So:

A = \frac{v_2 - v_1}{t_2-t_1}

A = \frac{30-15}{10 - 0}

A = \frac{15}{10}

A = 1.5

<em>Since the acceleration is positive, then it shows a constant acceleration.</em>

Solving (b): What happens at 10s to 25s

There was a zero acceleration and this is because the velocity do not change.

See proof below

At time 10, velocity = 30

At time 25, velocity = 30

This is represented as:

(t_1,v_1) = (10,30)

(t_2,v_2) = (25,30)

Acceleration (A) is the rate of change of velocity against time.

So:

A = \frac{v_2 - v_1}{t_2-t_1}

A = \frac{30-30}{25 - 10}

A = \frac{0}{15}

A = 0

Solving (c): What happens at 25s to 30s

There was a constant deceleration and this is proven below.

At time 25, velocity = 30

At time 30, velocity = 0

This is represented as:

(t_1,v_1) = (25,30)

(t_2,v_2) = (30,0)

Acceleration (A) is the rate of change of velocity against time.

So:

A = \frac{v_2 - v_1}{t_2-t_1}

A = \frac{0-30}{30-25}

A = \frac{-30}{5}

A = -6

<em>Since the acceleration is negative, then it shows a constant deceleration</em>

4 0
3 years ago
The Pilot of a plane measures an air velocity of 165Km/h south relative to the plane. An observer on
AVprozaik [17]

The speed obtained by the pilot is not accurate since it is measuring the rate of travel in the wind, true velocity is that compared to the ground. Therefore the speed of the wind is:

v wind = 165 - 145

v wind = 20 km/h<span>

<span>Therefore the wind velocity = 20 km/h against the plane.</span></span>

6 0
4 years ago
. A bird is flying with a speed of 18.0 m/s over water when it accidentally drops a 2.00 kg fish. If the altitude of the bird is
zysi [14]
V^2 = u^2 + 2gr, where v - speed, u - initial speed=0, r - displacement (or height)
v^2 = 0 + 2*10*5.4
v = 10.2 m/s
4 0
3 years ago
Read 2 more answers
The SI unit for measuring pressure is known as ?<br> A. Bernoulli B. Archimedes C. Newton D. Pascal
8090 [49]
The answer is D. pascal
7 0
3 years ago
When Mendeleev organized elements in his periodic table in order of increasing mass, similar elements with similar properties we
Temka [501]
Similar elements with similar properties were in the same groups and periods for instance lithium(Li) and sodium(Na) are alkaline metals and so belong to the same group (that is group 1).Also Hydrogen(H) and Helium(He) both have only one shell or energy level and so belong to the same period.
8 0
3 years ago
Other questions:
  • While skiing, Sam flies down a hill and hits a jump. He has a mass of 75 kg, and he leaves the jump at 18 m/s. What is his momen
    11·2 answers
  • (Edit: oops, this should be in college physics)
    8·1 answer
  • You construct a circuit containing some component C, along with other circuit elements. You want to simultaneously measure the c
    14·1 answer
  • What happens to the gas pressure within a sealed gallon can when it is heated? when it is cooled?
    14·1 answer
  • A dog barks in a park and hears its echo after 0.5 seconds. The sound of its bark got reflected by a nearby building. The sound
    7·1 answer
  • Alice and Tom dive from an overhang into the lake below. Tom simply drops straight down from the edge, but Alice takes a running
    14·1 answer
  • A special device can transmit sound that is out of phase with the sound of a noisy jackhammer to the jackhammer operator by mean
    7·1 answer
  • What is the Ramsar convention?
    15·1 answer
  • Which property of electromagnetic waves must go down as the frequency goes<br><br> up?
    6·1 answer
  • Actually, Sherman, there are more black moths than white ones because...
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!