In Newtonian physics, the acceleration of a body is inversely proportional to mass. In Newtonian rotational physics, angular acceleration is inversely proportional to the moment of inertia of a frame.
The moment of Inertia is frequently given the image I. it's miles the rotational analog of mass. The moment of inertia of an object is a measure of its resistance to angular acceleration. because of its rotational inertia, you want torque to change the angular pace of an object. If there may be no net torque acting on an object, its angular speed will no longer change.
In linear momentum, the momentum p is the same as the mass m instances of the velocity v; whereas for angular momentum, the angular momentum L is the same as the instant of inertia I times the angular pace ω.
Learn more about angular acceleration here:-brainly.com/question/21278452
#SPJ4
Answer:
The time taken is 
Explanation:
From the question we are told that
The speed of first car is 
The speed of second car is 
The initial distance of separation is 
The distance covered by first car is mathematically represented as

Here
is the initial distance which is 0 m/s
and
is the final distance covered which is evaluated as
So


The distance covered by second car is mathematically represented as

Here
is the initial distance which is 119 m
and
is the final distance covered which is evaluated as

Given that the two car are now in the same position we have that


Answer:
Vagetagble, fruits,fresh milk and juice vitamins c
By definition we know that the force is the vector product of the vector of the current by the length with the magnetic field vector. The current in this case goes in a positive "Y" direction. If we assume that the magnetic field goes in the positive "K" direction, then the result will be in the positive "X" direction. Attached solution.
Temperature and rate of evaporation are proportional to each other. Surface area: As the surface area increases, the rate of evaporation increases. The surface area and rate of evaporation are proportional to each other. Humidity: The rate of evaporation decreases with an increase in humidity.