Answer:
60
Explanation:
According to the given question, the computation of minimum coating thickness is shown below:-
The condition for constructive interference is



Now we will put the values to the above formula to reach the answer

= 60
Therefore we simply applied the above formula to determine the minimum coating thickness
Answer:
time constant will decrease and steady state current will decrease on increasing the resistance
Explanation:
As we know that the EMF of cell is E which is used to connected across a resistor and an inductor.
So we will have

here we know that

now here we have

so if we increase the value of resistance of the wire then the time constant will decrease
and hence it will take less time to reach near the steady state value
also the steady state current will be smaller in that case
Answer : The correct option is (D).
Explanation :
Given that,
A track begins at 0 meters and has a total distance of 100 meters. Juliet starts at the 10-meter mark while practicing for a race.
We have to find her position after she runs 45 meters.
From the attached figure,
Let A is the position of Juliet. O is the initial point such that OA = 10 m, AB = 45 m and OP = 100 m.
So, using simple mathematics, it is clear that the position of Juliet after running 45 meters will be 55 m. It is OB in the figure.
So, the correct option is (D) " 55 meters ".
Text book: We can measure the mass of the text book easily by weighing machine, to measure the volume we need to measure the length, width, and height of the text book by the ruler, by multiplying these dimension we can get the volume of the text book, and by dividing the mass of the book with its volume we can get the density of the book.
Milk Container: We can measure the mass of the milk container easily by weighing machine, now (assuming the milk container is cylindrical in shape) we need to measure its height, and and diameter and by the formula (π*r^2*h) we can measure its volume, and and by dividing the mass with its volume we can get the density of the milk container.
Air filled balloon: we can measure the mass of the air filled balloon by weighing it weight machine, we know that the density of air is 28.97 kg/m^3, by dividing the mass of the balloon with the denisty of air we can get the volume of the balloon.
We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>