Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Answer:
Explanation:
There will be loss of potential energy due to loss of height and gain of kinetic energy .
loss of height = R - R cos 14 , R is radius of hemisphere .
R ( 1 - cos 12 )
= 13 ( 1 - .978 )
h = .286 m
loss of potential energy
= mgh
= m x 9.8 x .286
= 2.8 m
gain of kinetic energy
1/2 m v ² = mgh
v² = 2 g h
v² = 2 x 9.8 x 2.8
v = 7.40 m /s
Non metals tend to have higher ionization energies
Answer:
Varies
Explanation:
They both relate to the process of doing something.
(a) The velocity of the object on the x-axis is 6 m/s, while on the y-axis is 2 m/s, so the magnitude of its velocity is the resultant of the velocities on the two axes:

And so, the kinetic energy of the object is

(b) The new velocity is 8.00 m/s on the x-axis and 4.00 m/s on the y-axis, so the magnitude of the new velocity is

And so the new kinetic energy is

So, the work done on the object is the variation of kinetic energy of the object: