Answer:
The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Explanation:
Given that,
Mass of proton 
Speed
We need to calculate the kinetic energy for non relativistic
Using formula of kinetic energy

Put the value into the formula


We need to calculate the kinetic energy for relativistic
Using formula of kinetic energy



Hence, The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
<h2>
Answer: It is highly flammable.</h2>
Explanation:
Liquid oxygen is created from oxygen atoms that have been forced to assume the liquid state due to <u>compression (change of pressure) and temperature modification.
</u>
Specifically this is achieved by cooling the oxygen enough to change it to its liquid state. So,<u> as the temperature drops, the atoms move more slowly because they have less energy.
</u>
In this sense, in the liquid state it is easier to store and mobilize oxygen, taking into account that it is a highly flammable gas.
Answer:
a)
, b) 
Explanation:
a) Let consider two equations of equilibrium, the first parallel to ski slope and the second perpendicular to that. The equations are, respectively:
The force on the skier is:



b) The equations of equilibrium are the following:

The force on the skier is:



It is given that an<span> airplane is flying through a thundercloud at a height of 2000 m.
</span><span>
Since the parity of charges is opposite and the airplane lies between the two charges and both the electric fields are in the same direction at the plane. Therefore, the magnitudes of the electric field at the aircrafts will add up.
Now, check the image to see the calculations:
</span>
Answer
Given,
refractive index of film, n = 1.6
refractive index of air, n' = 1
angle of incidence, i = 35°
angle of refraction, r = ?
Using Snell's law
n' sin i = n sin r
1 x sin 35° = 1.6 x sin r
r = 21°
Angle of refraction is equal to 21°.
Now,
distance at which refractive angle comes out
d = 2.5 mm
α be the angle with horizontal surface and incident ray.
α = 90°-21° = 69°
t be the thickness of the film.
So,


t = 2.26 mm
Hence, the thickness of the film is equal to 2.26 mm.