Answer:
The horse is going at 12.72 m/s speed.
Explanation:
The initial speed of the horse (u) = 3 m/s
The acceleration of the horse (a)= 5 m/
The displacement( it is assumed it is moving in a straight line)(s)= 15.3 m
Applying the second equation of motion to find out the time,



Solving this quadratic equation, we get time(t)=1.945 s, the other negative time is neglected.
Now applying first equation of motion, to find out the final velocity,



v=12.72 m/s
The horse travels at a speed of 12.72 m/s after covering the given distance.
(B.) I know it’s not that hard or easy so don’t be made if wrong
Explanation is in the file
tinyurl.com/wpazsebu
Answer:
Explanation:
Inductance L = 1.4 x 10⁻³ H
Capacitance C = 1 x 10⁻⁶ F
a )
current I = 14 .0 t
dI / dt = 14
voltage across inductor
= L dI / dt
= 1.4 x 10⁻³ x 14
= 19.6 x 10⁻³ V
= 19.6 mV
It does not depend upon time because it is constant at 19.6 mV.
b )
Voltage across capacitor
V = ∫ dq / C
= 1 / C ∫ I dt
= 1 / C ∫ 14 t dt
1 / C x 14 t² / 2
= 7 t² / C
= 7 t² / 1 x 10⁻⁶
c ) Let after time t energy stored in capacitor becomes equal the energy stored in capacitance
energy stored in inductor
= 1/2 L I²
energy stored in capacitor
= 1/2 CV²
After time t
1/2 L I² = 1/2 CV²
L I² = CV²
L x ( 14 t )² = C x ( 7 t² / C )²
L x 196 t² = 49 t⁴ / C
t² = CL x 196 / 49
t = 74.8 μ s
After 74.8 μ s energy stored in capacitor exceeds that of inductor.
Answer:
False you dont repaint your hamster.
Explanation:
LOL