Answer:
The new pressure will be 0.225 kPa.
Explanation:
Applying combined gas law:

where,
are initial pressure and volume at initial temperature
.
are final pressure and volume at initial temperature
.
We are given:



Putting values in above equation, we get:


Hence, the new pressure will be 0.225 kPa.
Answer:
Force = Pressure × Area
Explanation:
Easy, just invert the equation. Transpose the force variable over to the left of the equals sign, and transpose the pressure variable back to the right side.
Answer:
Option B. Cation that is smaller than the original atom.
Explanation:
Magnesium is a divalent element. This implies that magnesium can give up 2 electrons to become an ion (cation) as shown below:
Mg —> Mg²⁺ + 2e¯
Next, we shall write the electronic configuration of magnesium atom (Mg) and magnesium ion (Mg²⁺). This can be written as follow:
Mg (12) = 2, 8, 2
Mg²⁺ (10) = 2, 8
From the above illustration, we can see that the magnesium atom (Mg) has 3 shells while the magnesium ion (Mg²⁺) has 2 shells.
This simply means that the magnesium ion (Mg²⁺) i.e cation is smaller that the original magnesium atom (Mg).
The properties of substances can be used to put the into groups.
<h3>Grouping of substances</h3>
In chemistry, it is often necessary to put substances into groups based on similarity in their properties. This is what led to the idea of a periodic table of elements.
Similarly, when we have unknown substances, we can group them according to the similarities in their properties.
Learn more about properties of substances: brainly.com/question/19886211
Answer:
10.5g
Explanation:
First, let us calculate the number of mole of NaHCO3 present in the solution. This is illustrated below:
Volume = 250mL = 250/1000 = 0.25L
Molarity = 0.5M
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 0.5 x 0.25
Mole = 0.125 mole
Now, we shall be converting 0.125 mole of NaHCO3 to grams to obtain the desired result. This can be achieved by doing the following:
Molar Mass of NaHCO3 = 23 + 1 + 12 +(16x3) = 23 + 1 +12 +48 = 84g/mol
Number of mole of NaHCO3 = 0.125 mole
Mass of NaHCO3 =?
Mass = number of mole x molar Mass
Mass of NaHCO3 = 0.125 x 84
Mass of NaHCO3 = 10.5g
Therefore, 10.5g of NaHCO3 is needed.