Answer:
The distance covered by the rocket after fuel ran out is 
Explanation:
Given that the rocket moves with an acceleration 
time 
Since the rocket starts from rest initial velocity 
The distance it travelled within this time is given by

Velocity at this point is given by 

Given that at this height it runs out of fuel but travels further. Here final velocity
(maximum height), initial velocity
and time to zero velocity 
Thus it travels
more after fuel running out. The distance covered during this period is given

Answer:
No because you cannot see air so therefore it cannot make shadows
Explanation:
Answer:
transmission: the passing of a wave through an object
Explanation:
Answer:
12164.4 Nm
Explanation:
CHECK THE ATTACHMENT
Given values are;
m1= 470 kg
x= 4m
m2= 75kg
Cm = center of mass
g= acceleration due to gravity= 9.82 m/s^2
The distance of centre of mass is x/2
Center of mass(1) = x/2
But x= 4 m
Then substitute, we have,
Center of mass(1) = 4/2 = 2m
We can find the total torque, through the summation of moments that comes from both the man and the beam.
τ = τ(1) + τ(2)
But
τ(1)= ( Center of m1 × m1 × g)= (2× 470× 9.81)
= 9221.4Nm
τ(2)= X * m2 * g = ( 4× 75 × 9.81)= 2943Nm
τ = τ(1) + τ(2)
= 9221.4Nm + 2943Nm
= 12164.4 Nm
Hence, the magnitude of the torque about the point where the beam is bolted into place is 12164.4 Nm
Explanation:
unbalanced: a turning vehicle, apple falling on the ground, kicking a ball
balanced: floating on water, fruit hanging from tree, tug of war equally balanced teams