Answer:
The magnitude of the centripetal force that acts on him
Explanation:
Given that,
Mass = 80.0 kg
Distance = 6.10 m
Speed = 6.80 m/s
We need to calculate the magnitude of the centripetal force that acts on him
Using formula of the centripetal force

Where, F = force
m = mass
v = speed
r = distance
Put the value into the formula


Hence, The magnitude of the centripetal force that acts on him
The only thing you need to know in order to solve this task is that <span>plank length (which is force x), should equal the increase in potential energy, so what we have now : (mass)* g * (height).
It has to look like that: </span>
<span>F * 3.0 = 150 x 9.81 x 1.20
Then solve for F, the result should be in newtones = 588N
Do hope it makes sense.</span>
Ocean currents<span> act much like a conveyer belt, transporting warm water and precipitation from the equator toward the poles and cold water from the poles back to the tropics. Therefore, </span>currents<span> regulate global </span>climate<span>, helping to counteract the uneven distribution of solar radiation reaching Earth's </span>surface<span>.</span>
its the the first one u said