1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
3 years ago
15

A person jumps out a fourth-story window 14 m above a firefighter safety net. The survivor stretches the net 1.8 m before coming

to rest. what was the deceleration experienced by the survivor? Use g = 9.8 m/s2 Calculate to one decimal.
Physics
1 answer:
Monica [59]3 years ago
4 0

Answer:

The deceleration is  a =  - 76.27 m/s^2

Explanation:

From the question we are told that

   The height above  firefighter safety net is H  = 14 \ m

   The length by which the net is stretched is s =  1.8 \ m

   

From the law of energy conservation

    KE_T + PE_T =  KE_B + PE_B

 Where KE_T is the kinetic energy of the person before jumping which equal to zero(because to kinetic energy at maximum height )

   and  PE_T is the potential energy of the before jumping  which is mathematically represented at

          PE_T  = mg H

and  KE_B is the kinetic energy of the person just before landing on the safety net  which is mathematically represented at

        KE_B = \frac{1}{2} m v^2

and  PE_B is the potential energy of the person as he lands on the safety net which has a value of zero (because it is converted to kinetic energy )

   So the above equation becomes

          mgH =  \frac{1}{2} m v^2

=>           v =  \sqrt{2 gH }

    substituting values

                v =  16.57 m/s

Applying the equation o motion

             v_f =  v  + 2 a s

Now the final velocity is zero because the person comes to rest

      So

         0 = 16.57 + 2 * a * 1.8

            a =  - \frac{16.57^2 }{2 * 1.8}

            a =  - 76.27 m/s^2

         

         

You might be interested in
An object is located 50.0 cm from a concave mirror. The magnitude of the mirror focal length is 25.0 cm. What is the image dista
ioda

Answer:

Correct answer: C. 50 cm

Explanation:

Given data:

The distance of the object from the top of the concave mirror o = 50.0 cm

The magnitude of the concave mirror focal length 25.0 cm.

Required : Image distance d = ?

If we know the focal length we can calculate the center of the curve of the mirror

r = 2 · f = 2 · 25 = 50 cm

If we know the theory of spherical mirrors and the construction of figures then we know that when an object is placed in the center of the curve, there is also a image in the center of the curve that is inverted, real and the same size as the object.

We conclude that the image distance is 50 cm.

We will now prove this using the formula:

1/f = 1/o + 1/d => 1/d = 1/f - 1/o = 1/25 - 1/50 = 2/50 - 1/50 = 1/50

1/d = 1/50 => d = 50 cm

God is with you!!!

6 0
3 years ago
Read 2 more answers
Name the quantity which is measured by the area occupied below the velocity time graph
kiruha [24]

If you mark off a beginning time and ending time on the graph,
then the area under the part of the graph between those limits
is the distance covered during that period of time.

3 0
3 years ago
Read 2 more answers
A uniform disk is constrained to rotate about an axis passing through its center and perpendicular to the plane of the disk. If
ella [17]

Answer:

442.5 rad

Explanation:

w₀ = initial angular velocity of the disk = 7.0 rad/s

α = Constant angular acceleration = 3.0 rad/s²

t = time period of rotation of the disk = 15 s

θ = angular displacement of the point on the rim

Angular displacement of the point on the rim is given as

θ = w₀ t + (0.5) α t²

inserting the values

θ = (7.0) (15) + (0.5) (3.0) (15)²

θ = 442.5 rad

4 0
3 years ago
an optician uses a plane mirror to help him. suppse a patient sits in a chair 2.5m away from him. He views the image of a chart
viva [34]

Answer:

I think 75 m

Explanation:

tell if it was correct

5 0
3 years ago
How does the work required to accelerate a particle from 10 m/s to 20 m/s compare to that required to accelerate it from 20 m/s
poizon [28]

To solve this problem we will apply the energy conservation theorem for which the work applied on a body must be equivalent to the kinetic energy of this (or vice versa) therefore

W = \Delta KE

\Delta W = \frac{1}{2} (m)(v_f)^2 -\frac{1}{2} (m)(v_i)^2

Here,

m = mass

v_{f,i} = Velocity (Final and initial)

First case) When the particle goes from 10m/s to 20m/s

\Delta W = \frac{1}{2} (m)(v_f)^2 -\frac{1}{2} (m)(v_i)^2

\Delta W = \frac{1}{2} (m)(20)^2 -\frac{1}{2} (m)(10)^2

W_1 = 150(m) J

Second case) When the particle goes from 20m/s to 30m/s

\Delta W = \frac{1}{2} (m)(v_f)^2 -\frac{1}{2} (m)(v_i)^2

\Delta W = \frac{1}{2} (m)(30)^2 -\frac{1}{2} (m)(20)^2

W_1 = 250(m) J

As the mass of the particle is the same, we conclude that more energy is required in the second case than in the first, therefore the correct answer is A.

5 0
3 years ago
Other questions:
  • an object traveling 200 feet per second slows to 50 feet per second in 5 seconds. Calculate the acceleration of the object
    15·1 answer
  • What’s the right one.
    9·1 answer
  • When you drink cold water, your body must expend metabolic energy in order to maintain normal body temperature (37° C) by warmi
    13·2 answers
  • Βββββββββββββ<br>fbntdbsv
    13·1 answer
  • For two traveling waves, if the crest of one wave coincides with a trough of another, what type of interference occurs?
    8·1 answer
  • Describe the formation of both positive and negative ions
    7·1 answer
  • What area of the earth contains semi-solid rock and lava
    9·1 answer
  • A 400-kg space probe has a weight of 3,560 N on one of the above planets. According to the table
    7·1 answer
  • Name the group of galaxies of which the Milky Way is a member?
    11·2 answers
  • How much pressure is created when you apply a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!