For all three questions, we will use the fact that
- molarity = (moles of solute)/(liters of solution)
1) For 175 mL of solution at 0.203 M, this means that:
- 0.203 = (moles of solute)/0.175
- moles of solute = 0.035523 mol
Considering the hydrochloric acid solution, if we have 0.035523 mol, then:
- 6.00 = 0.035523/(liters of solution)
- liters of solution = 0.035523/6.00 = 0.0059205 = <u>5.92 mL (to 3 sf)</u>
<u />
2) If there is 20.3 mL = 0.0203 L, then:
- 8.20 = (moles of solute)/0.0203
- moles of solute = 0.16646 mol
This means that the molarity of the diluted solution is:
- 0.16646/(0.200) = <u>0.832 M (to 3 sf)</u>
<u />
3) If we need 1.50 L of 0.700 M solution, then:
- 0.700 = (moles of solute)/1.50
- moles of solute = 1.05 mol
Considering the 9.36 M acid solution, from which we need 1.05 mol of perchloric acid from,
- 9.36 = 1.05/(liters of solution)
- liters of solution = 1.05/9.36, which is 0.11217948717949 L, or <u>112 mL (to 3 sf)</u>
Answer:
It is in the state of "thermal arrest"
Explanation:
The temperature stays constant during the phase change process . This is because the matter has more internal energy and heat has to be taken away for the solidification process to begin. The energy that is required for a phase change is know as latent heat (which is the energy released or absorbed by a body during a thermodynamic process).
In pure water, all of the molecules in the liquid are water molecules so the mole fraction is 1 (100 % H2O, 55 mol/L). In sea water, the concentration of water molecules in the solution is less than that of pure water so the vapor pressure of sea water is also lower.
Maybe this example could help you to understand this problem.
https://image.slidesharecdn.com/121howmanyatoms-091201144624-phpapp02/95/12-1-how-many-atoms-17-728....
I could only find 7!
- independent variable
- dependent variable
- control group
- experimental group
- constant
- observation
- inference