Answer:
2.95 g of CH₄
Explanation:
To start this, we determine the equation:
4H₂ + CO₂ → CH₄ + 2H₂O
4 moles of hydrogen react to 1 mol of carbon dioxide in order to produce 1 mol of methane and 2 moles of water.
To determine the limiting reactant, we need to know the moles of each reactant.
8.1 g . 1 mol/ 44g = 0.184 moles of carbon dioxide
2.3 g . 1mol / 2g = 1.15 moles of hydrogen
4 moles of hydrogen react to 1 mol of CO₂
Then, 1.15 moles may react to (1.15 . 1) /4 = 0.2875 moles
We only have 0.184 moles of CO₂, so this is the limiting reactant. Not enough CO₂ to complete the 0.2875 moles that are needed.
Ratio is 1:1. 1 mol of CO₂ produces 1 mol of methane
Then, 0.184 moles of CO₂ will produce 0.184 moles of CH₄
We convert moles to mass: 0.184 mol . 16 g /mol = 2.95 g
Answer:
If you're looking at the data as a whole, it would most likely be 100ml.
Explanation: The definition of precise is data close together so 100ml is furthest away from the other recorded numbers
Answer: A lunar eclipse occurs when the Moon passes directly behind the Earth into its umbra (shadow). This can occur only when the Sun, Earth, and Moon are aligned exactly with the Earth in the middle.
Explanation:
Answer:
When pH = pKa, the ionizable compound in question (either acid or base) will be half protonated and half deprotonated
Explanation:
A convenient way of expressing the relative strength of an acid is by the value of its pKa, which makes it easy to see in small changes in pKa the changes associated with large variations in Ka. Small pKa values are equivalent to large Ka (dissociation constant) values, and as pKa decreases, the strength of the acid increases.
An acid will be stronger the lower its pKa and in a base it happens the other way around, which is stronger the higher its pKa.
Those dissociation constants are not fixed, they depend on other variables. For example, the dissociation constant changes at different temperatures. However, it maintains its value at the same temperature, before changes in the concentration of any of the species or even under the action of a catalyst.