The solution is as follows:
K = [Partial pressure of isoborneol]/[Partial pressure of borneol] = 0.106
The molar mass of isoborneol/borneol is 154.25 g/mol
Mol isoborneol = 15 g/154.25 = 0.0972 mol
Mol borneol = 7.5 g/154.25 = 0.0486 mol
Use the ICE approach
borneol → isoborneol
I 0.0972 0.0486
C -x +x
E 0.0972 - x 0.0486 + x
Total moles = 0.1458
Using Raoult's Law,
Partial Pressure = Mole fraction*Total Pressure
[Partial pressure of isoborneol] = [(0.0972-x)/0.1458]*P
[Partial pressure of borneol] = [(0.0486+x/0.1458)]*P
0.106 = [(0.0972-x)/0.1458]*P/ [(0.0486+x/0.1458)]*P
Solving for x,
x = 0.0832
Thus,
<em>Mol fraction of borneol = (0.0486+0.0832)/0.1458 = 0.904</em>
<em>Mol fraction of isoborneol = (0.0972-0.0832)/0.1458 = 0.096</em>
The right answer for the question that is being asked and shown above is that: "C. carbon and hydrogen." The pair of elements is MOST likely to chemically combine and form ionic bonds are <span>carbon and hydrogen </span>
The balanced thermochemical equation is
KBr ------- K + 1/2 Br2
<h3>What is thermochemical equation? </h3>
A Thermochemical Equation is defined as the balanced stoichiometric chemical equation which includes the enthalpy change, ΔH.
The chemical equation for the decomposition of potassium bromide to its constituent elements bromine ans potassium :
KBr ----- K + Br2
The balanced thermochemical equation of the decomposition of potassium bromide to its constituent elements potassium and bromide as follows
KBr ------- K + 1/2 Br2
As the heat is absorbed in this reaction therefore, heat is positive.
Thus, we concluded that the balanced thermochemical equation is
KBr ------- K + 1/2 Br2
learn more about thermochemical equation:
brainly.com/question/2733624
#SPJ4
88 Grams because the principal of conservation of mass states total mass in equals total out so 200 in 122+88=200 out
Answer:
You can fill 212 balloons.
Explanation:
First we <u>calculate the helium moles in the small cylinder</u>, using <em>PV=nRT:</em>
- P = 14300 kPa ⇒ 14300 * 0.009869 = 141.13 atm
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 25 °C ⇒ 25 + 273.16 = 298.16 K
141.13 atm * 2.20 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Then we <u>calculate the number of moles that can fit in a single balloon</u>:
- 1.22 atm * 1.20 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Finally we <u>divide the total number of available moles by the number of moles in a single balloon</u>:
- 12.70 mol / 0.0599 mol = 212.09
So the answer is that you can fill 212 balloons.