1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANTONII [103]
4 years ago
8

What type of motion does an object traveling in a horizontal vector have?

Physics
1 answer:
Effectus [21]4 years ago
6 0

Accelerating objects are objects which are changing their velocity - either the speed (i.e., magnitude of the velocity vector) or the direction. An object undergoing uniform circular motion is moving with a constant speed. Hope you find this helpful

You might be interested in
In an inelastic collision a 2.5 kg ball moving at 7.5 m/s is caught by a 70kg man while the man is standing on ice. What is the
MrRa [10]

The velocity of the ball and the man is 0.259 m/s

Explanation:

We can solve this problem by using the law of conservation of momentum. In fact, in an isolated system, the total momentum before and after the collision must be conserved. Therefore, for the ball-man system, we can write:

p_i = p_f\\m_1 u_1 + m_2 u_2 = (m_1+m_2)v

where:

m_1 = 2.5 kg is the mass of the ball

u_1 = 7.5 m/s is the initial velocity of the ball

m_2 = 70 kg is the mass of the man

u_2 = 0 is the initial velocity of the man

v is the final velocity of the man and the ball after the collision

Re-arranging the equation and substituting the values, we find the final velocity:

v=\frac{m_1 u_1}{m_1+m_2}=\frac{(2.5)(7.5)}{2.5+70}=0.259 m/s

So, the man and the ball slides on the ice at 0.259 m/s.

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

3 0
4 years ago
A particle moves along the curve below. y = sqrt(1 + x^3) As it reaches the point (2, 3), the y-coordinate is increasing at a ra
blagie [28]

Answer:7 cm/s

Explanation:

Given

Particle move along curve

y=\sqrt{1+x^3}

As it reaches the (2,3) its y coordinate is increasing at 14 cm/s

Differentiating y w.r.t time

\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{3x^2}{2\sqrt{1+x^3}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

Now at (2,3)

\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{3\cdot 2^2}{2\sqrt{1+2^3}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

14=\frac{3\times 4}{2\times \sqrt{9}}\times \frac{\mathrm{d} x}{\mathrm{d} t}

\frac{\mathrm{d} x}{\mathrm{d} t}=7 cm/s

7 0
3 years ago
The two masses in the Atwood's machine shown in the figure are initially at rest at the same height. After they are released, th
Inga [223]

According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.

To solve this problem we must apply the concept related to the conservation of energy theorem.

PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so

E_i = E_f

0 = \frac{1}{2} (m_1+m_2)v_f^2-m_2gh+m_1gh

v_f = \sqrt{2gh(\frac{m_2-m_1}{m_1+m_2})}

PART B) Replacing the values given as,

h= 1.7m\\m_1 = 3.5kg\\m_2 = 4.3kg \\g = 9.8m/s^2 \\

v_f = \sqrt{2gh(\frac{m_2-m_1}{m_1+m_2})}

v_f = \sqrt{2(9.8)(1.7)(\frac{4.3-3.5}{3.5+4.3})}

v_f = 1.8486m/s

Therefore the speed of the masses would be 1.8486m/s

6 0
4 years ago
Special relativity can be used to study an object in which frame of reference?
Tresset [83]
Special relativity led the path for general relativity; special relativity is in a sense a special application of the rules of general relativity. While general relativity is in position to tackle all of these problems, special relativity can tackle only problems in inertial frames. Inertial frame means that the frame of reference is inot accelerating. So, we disqualify answers A and D. However, remember that moving in a circle means that there is an acceleration, the centrifugal one, even if the speed does not change. Hence C is also incorrect.
The correct answer is B, since if there is no change in velocity, the frame does not accelerate and it is inertial.
3 0
3 years ago
Read 2 more answers
Passengers on a carnival ride move at constant speed in a horizontal circle of radius 5.0 m, making a complete circle in 4.0 s.
Nataliya [291]

Answer:

bonita sisisisiisisisisiisissiissiisiiss

7 0
3 years ago
Other questions:
  • A book 15.6 cm tall is 28.7 cm to the left of a plane mirror. What is the height of the image formed?
    8·1 answer
  • Calculate the acceleration of a 3000 kg truck that had a net force of 500 N applied to it. Express your answer in m/s^2???
    9·1 answer
  • Radio stations use electromagnetic waves for broadcasting. The chart shows different frequencies of waves used by radio stations
    7·2 answers
  • The mineral needed in blood is.<br> 1.iodine<br> 2.oxygen<br> 3.iron<br> 4.soduim<br> 5.hemoglobin
    10·2 answers
  • Instruction
    14·1 answer
  • Atoms of element A decay to atoms of element B with a half-life of 20,000 years. If there are 10,000 atoms of A to begin with (a
    6·2 answers
  • On a separate sheet of paper, tell why scientists in different countries can easily compare the amount of matter in similar obje
    15·1 answer
  • What is being despited in this picture
    15·1 answer
  • Explain Newton's Universal law of gravitation when distance remains same but mass changes(prove that statement)​
    10·2 answers
  • The game starts with the serve on the left side of the court.<br> O<br> True<br> O<br> False
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!