The average radius(r) of each grain is r = 50 nanometers
= 50*10^-6 meters
Since it is spherical, so
Volume=(4/3)*pi*r^3
V= (4/3)*pi*(50*10^-6)^3
V=5.23599*10^-13 m^3
We are given the Density(ρ) =2600kg/m^3
We know that:
Density(p) = mass(m)/volume(V)
m = ρV
So the mass of a single grain is:
m = 5.23599*10^-13 * 2600 = 1.361357*10^-9 kg
The surface area of a grain is:
a = 4*pi*r^2
a = 4*pi*(50*10^-6)^2
a = 3.14*10^-8 m^2
Since we know the surface area and mass of a grain, the
conversion factor is:
1.361357*10^-9 kg / 3.14*10^-8 m^2
Find the Surface area of the cube:
cube = 6a^2
cube = 6*1.1^2 = 7.26m^2
multiply this by the converions ratio to get:
total mass of sand grains = (7.26 m^2 * 1.361357*10^-9 kg)
/ (3.14*10^-8 m^2)
total mass of sand grains = 0.3148 kg = 314.80 g
Answer: y = 2.4×10^-6m or y= 2.4μm
Explanation: The formulae for the distance between the central bright fringe to any other fringe in pattern is given as
y = R×mλ/d
Where y = distance between nth fringe and Central bright spot fringe.
m = position of fringe = 4
λ = wavelength of light= 600nm = 600×10^-9 m
d = distance between slits = 1.50×10^-5m
R = distance between slit and screen = 2m
y = 2 × 4 × 600×10^-9/2
y = 4800×10^-9/2
y = 2400 × 10^-9
y = 2.4×10^-6m or y= 2.4μm
Answer: See explanation
Explanation:
The evolutionary stages for the formation of planets from earliest to latest will be:
1. Dust keeps matter inside the disk cool enough for planet formation to start
2. Dust grains form condensation nuclei on which surrounding atoms condense to form small clumps of matter.
3. Small clumps of matter stick together via the process of accretion to form planetesimals a few hundred kilometers in diameter.
4. Planetesimals begin to accrete, forming protoplanets.
5. A collection of a few planet-sized protoplanets remain in a fairly cleared out disk around the star
Answer:
Yes
Explanation:
When an object has more mass it takes more gravity to keep it down therefore producing friction which in return reduces the amount of kinetic energy created. A change in an object's speed has an greater effect on its kinetic energy. than a change in its mass has, because kinetic energy is proportional to.