Answer:
1.144 A
Explanation:
given that;
the length of the wire = 2.0 mm
the diameter of the wire = 1.0 mm
the variable resistivity R = ![\rho (x) =(2.5*10^{-6})[1+(\frac{x}{1.0 \ m})^2]](https://tex.z-dn.net/?f=%5Crho%20%28x%29%20%3D%282.5%2A10%5E%7B-6%7D%29%5B1%2B%28%5Cfrac%7Bx%7D%7B1.0%20%5C%20m%7D%29%5E2%5D)
Voltage of the battery = 17.0 v
Now; the resistivity of the variable (dR) can be expressed as = 
![dR = \frac{(2.5*10^{-6})[1+(\frac{x}{1.0})^2]}{\frac{\pi}{4}(10^{-3})^2}](https://tex.z-dn.net/?f=dR%20%3D%20%5Cfrac%7B%282.5%2A10%5E%7B-6%7D%29%5B1%2B%28%5Cfrac%7Bx%7D%7B1.0%7D%29%5E2%5D%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%2810%5E%7B-3%7D%29%5E2%7D)
Taking the integral of both sides;we have:
![\int\limits^R_0 dR = \int\limits^2_0 3.185 \ [1+x^2] \ dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5ER_0%20%20dR%20%3D%20%5Cint%5Climits%5E2_0%203.185%20%5C%20%5B1%2Bx%5E2%5D%20%5C%20dx)
![R = 3.185 [x + \frac {x^3}{3}}]^2__0](https://tex.z-dn.net/?f=R%20%3D%203.185%20%5Bx%20%2B%20%5Cfrac%20%7Bx%5E3%7D%7B3%7D%7D%5D%5E2__0)
![R = 3.185 [2 + \frac {2^3}{3}}]](https://tex.z-dn.net/?f=R%20%3D%203.185%20%5B2%20%2B%20%5Cfrac%20%7B2%5E3%7D%7B3%7D%7D%5D)
R = 14.863 Ω
Since V = IR


I = 1.144 A
∴ the current if this wire if it is connected to the terminals of a 17.0V battery = 1.144 A
Explanation:
(a) Hooke's law:
F = kx
7.50 N = k (0.0300 m)
k = 250 N/m
(b) Angular frequency:
ω = √(k/m)
ω = √((250 N/m) / (0.500 kg))
ω = 22.4 rad/s
Frequency:
f = ω / (2π)
f = 3.56 cycles/s
Period:
T = 1/f
T = 0.281 s
(c) EE = ½ kx²
EE = ½ (250 N/m) (0.0500 m)²
EE = 0.313 J
(d) A = 0.0500 m
(e) vmax = Aω
vmax = (0.0500 m) (22.4 rad/s)
vmax = 1.12 m/s
amax = Aω²
amax = (0.0500 m) (22.4 rad/s)²
amax = 25.0 m/s²
(f) x = A cos(ωt)
x = (0.0500 m) cos(22.4 rad/s × 0.500 s)
x = 0.00919 m
(g) v = dx/dt = -Aω sin(ωt)
v = -(0.0500 m) (22.4 rad/s) sin(22.4 rad/s × 0.500 s)
v = -1.10 m/s
a = dv/dt = -Aω² cos(ωt)
a = -(0.0500 m) (22.4 rad/s)² cos(22.4 rad/s × 0.500 s)
a = -4.59 m/s²
There’s many types of electricity that comes from an outlet, like [15A, 120 Volt Outlets] those are more common in older homes and can come in two versions [Two-pronged outlet and three-pronged version]
First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:

where
v is the wave speed

its wavelength
f its frequency
Using

and

, we get

We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:

and since we know both v and t, we can find the distance L between the dolphin and the tuna: