Period is seconds/cycle. So just divide number of seconds by the cycles completed. Hope this helps!
<h3>
Answer:</h3>
5.395 × 10^8 Watts
<h3>
Explanation:</h3>
<u>We are given;</u>
- Rate of flow is 1.1 × 10^6 kg/s
- Distance is 50.0 m
- Gravitational acceleration is 9.8 m/s²
We are required to calculate the power that is generated by the falling water
- Power is the rate of work done
- It is given by dividing the energy or work done by time
But; work done = Force × distance
Therefore;
Power = (F × d) ÷ time
The rate is 1.1 × 10^ 6 Kg/s
But, 1 kg = 9.81 N
Therefore, the rate is equivalent to 1.079 × 10^7 N/s
Thus,
Power = Rate (N/s) × distance
= 1.079 × 10^7 N/s × 50.0 m
= 5.395 × 10^8 Watts
The power generated from the falling water is 5.395 × 10^8 Watts
Answer:
W'=125.44 N
Explanation:
The weight of a person on the surface of Earth is 784 N
Weight is given by :
W = mg
m is mass of the person and g is acceleration due to gravity on the surface of Earth (10 m/s²)

The acceleration due to gravity on the surface of Moon, g' = 1.6 m/s²
Weight of the person on the moon is :
W'=mg'

Hence, the person would weigh 125.44 N on the Moon.
Answer:
See below
Explanation:
KE = 1/2 m v^2 multiply both sides by 2
2 (KE) = mv^2 divide both sides by m
2(KE) / m = v^2 sqrt both sides
√ [(2KE)/m ] = v
Answer:
Anomalies consist of one or more modifications, insertions or deletions. As was described in Section 3.1, there are only three types of changes that can be made to a graph. Therefore, anomalies that consist of structural changes to a graph must consist of one of these types. Assumption 4.
Explanation: