There will be three students left out
Refer to the diagram shown below.
The right vertex is at (14, -1), and the center is at (-1, -1).
Therefore the semi-major axis is
a = 14 - (-1) = 15
The right focus is at (8, -1).
Therefore
c = 8 - (-1) = 9.
The distance of the directrix from the center is
d = c²/a = 9²/15 = 81/15 = 27/5.
Therefore the equation for the left directrix is
x = -1 - 27/5 = -32/5
Answer: x = -27/5
We are tasked to solve the value of p(8a) in the expression p(x)=3x^2-4.
This means that what would find the value of the expression when x=8a. To solve this, we simply substitute the value of x in the expression.
p(x)=3x^2-4
p(8a)=3(8a)^2-4
p(8a)=3(64a^2)-4
p(8a)=192a^2-4
Answer:
I do not see a image
Step-by-step explanation: