Answer:
B) The same as the momentum change of the heavier fragment.
Explanation:
Since the initial momentum of the system is zero, we have
0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.
0 = p + p'
p = -p'
Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0 = p
The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'
Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'
<u>So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment. </u>
So, option B is the answer
Answer:
6.96 s
Explanation:
The period of a simple pendulum is given by:

where
L is the length of the pendulum and g the acceleration due to gravity.
In this problem, we have a pendulum with length L = 2.00 m, while the acceleration due to gravity is 1/6 that of the earth:

So, the period of the pendulum on the moon is

Free fall means rapid fall or a downward motion due to gravity. Sentence example: When Joe was accidentally bumped by Sarah, he was sent towards a free fall down the escalator, leading to a serious injury on his arm and two legs.
Answer:
C. 1/2
Explanation:
Half of the Earth's surface faces the sun at any time.