Answer:
The greater the force that is applied to an object, the greater the acceleration. However, if that same force was applied to an object with a larger mass, it will have a smaller acceleration.
Explanation:
f=ma
<h3>
Answer:</h3>
7.4797 g AlF₃
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN] 2AlF₃ + 3K₂O → 6KF + Al₂O₃
[Given] 15.524 g KF
<u>Step 2: Identify Conversions</u>
[RxN] 6 mol KF = 2 mol AlF₃
Molar Mass of K - 39.10 g/mol
Molar Mass of F - 19.00 g/mol
Molar Mass of Al - 26.98 g/mol
Molar Mass of KF - 39.10 + 19.00 = 58.1 g/mol
Molar Mass of AlF₃ - 26.98 + 3(19.00) = 83.98 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 5 sig figs.</em>
7.47966 g AlF₃ ≈ 7.4797 g AlF₃
Dissolution means to make the compound apart, So when we have ionic compounds like NaI which has metal and non-metal ions, It separates into parts of positive ions and negative ions. After we separate this compound apart we will put the charge of each on above its symbol and then start to balance the equation of the dissolution.
So the dissolution equation of NaI is:
NaI(s) → Na^+(s) + I^-(Aqu)
<h3>
Answer:</h3>
5.89%
<h3>
Explanation:</h3>
We are given;
- Mass of the solute, LiOH as 40.1 g
- Mass of the solvent, H₂O as 681 g
We are required to calculate the mass percent composition of solution;
- But; How do we calculate the mass percent composition of a solution?
- We use the formula;
- Mass composition of a solution = (Mass of solute/mass of solution) 100%
Mass Percent = (40.1 g/681 g)× 100%
= 5.888 %
= 5.89%
Therefore, the mass percent composition of the solution is 5.89%