Answer:
The magnitude of force is 1.86 N and the direction of force is towards the other wire.
Explanation:
Given:
Current flowing through each power line, I = 130 A
Distance between the two power lines, d = 40 cm = 0.4 m
Length of power lines, L = 220 m
The force exerted by the power lines on each other is given by the relation:

Substitute the suitable values in the above equation.

F = 1.86 N
Since the direction of current flowing through the power lines are opposite to each other, so the force is attractive in nature. Hence, the direction of force experienced by the power lines on each other is towards the each other.
Answer:
C. Photosphere
Explanation:
The lights shown in the figure comes from the outermost layer of the Sun. This layer is called photosphere.
This is the layer from where the light of the Sun is radiated, before travelling through space and reaching us.
The photosphere is the coldest layer of the Sun: its surface temperature is between 4500 and 6000 K. Its width is approximately 100 km.
A characteristic of the photosphere is the presence of the sunspots, which appear as darker spots, and are regions of lower temperature caused by a concentration of magnetic flux.
Explanation:
Work is the dot product of the force and displacement vectors.
W = F · d
In other words, it is the force times the parallel component of the distance.
W = F d cos θ, where θ is the angle between the force and distance.
Answer:
The level of the root beer is dropping at a rate of 0.08603 cm/s.
Explanation:
The volume of the cone is :

Where, V is the volume of the cone
r is the radius of the cone
h is the height of the cone
The ratio of the radius and the height remains constant in overall the cone.
Thus, given that, r = d / 2 = 10 / 2 cm = 5 cm
h = 13 cm
r / h = 5 / 13
r = {5 / 13} h


Also differentiating the expression of volume w.r.t. time as:

Given:
= -4 cm³/sec (negative sign to show leaving)
h = 10 cm
So,



<u>The level of the root beer is dropping at a rate of 0.08603 cm/s.</u>