Answer:
Nature selects organisms with specific heritable traits to survive and reproduce
Explanation:
The Evolution Theory by natural selection dictates that organisms with specific inherited characteristics have better survival chances in the new environment.
Inheriting positive traits such as resistance to a certain disease will improve the survival chances of the organism to enable it reproduce and pass that gene to the next generation.
Answer:
51.85m/s
Explanation:
Given parameters:
Mass of ball = 0.0459kg
Force = 2380N
Time taken = 0.001s
Unknown:
Speed of the ball afterwards = ?
Solution:
To solve this problem, we use Newton's second law of motion:
F = m x
F is the force
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
2380 = 0.0459 x
0.0459v = 2.38
v = 51.85m/s
Light as a wave: Light can be described (modeled) as an electromagnetic wave. ... This changing magnetic field then creates a changing electric field and BOOM - you have light. Unlike many other waves (sound, water waves, waves in a football stadium), light does not need a medium to “wave” in.
Explanation:
Answer:
B) 0.3Hz
Explanation:
I just took the test i hope i helped and i hope you pass the test
Answer:
- The work made by the gas is 7475.69 joules
- The heat absorbed is 7475.69 joules
Explanation:
<h3>
Work</h3>
We know that the differential work made by the gas its defined as:

We can solve this by integration:

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law


This give us

As n, R and T are constants

![\Delta W= \ n \ R \ T \left [ ln (V) \right ]^{v_2}_{v_1}](https://tex.z-dn.net/?f=%20%5CDelta%20W%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%5Cleft%20%5B%20ln%20%28V%29%20%5Cright%20%5D%5E%7Bv_2%7D_%7Bv_1%7D%20)



But the volume is:



Now, lets use the value from the problem.
The temperature its:

The ideal gas constant:

So:


<h3>Heat</h3>
We know that, for an ideal gas, the energy is:

where
its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.
By the first law of thermodynamics, we know

where
is the Work made by the gas (please, be careful with this sign convention, its not always the same.)
So:

