So we know coefficient of f times normal force is friction. So do 100= .25 times x. Now solve for x. You get 400. So 400 is the normal force. And we know normal force equals weight in these types of problems so the answer is 400
Hello! Sorry this is a little late!
The answer to your question would best be option C, y<span>es, because electric charges have electric fields surrounding them that allow them to exert forces on other objects without touching them.
I just took this test, and can 100% confirm this is the correct answer!
Hope this helps, and have a great day! :)</span>
Answer:
Push or Pull Forces - example
When you push against a wall the force that you exert is an example of a push force. When you pull a trolley car the force that you exert is an example of pull force.
Answer:
MRCORRECT has answered the question
Explanation:
Newton realized that the reason the planets orbit the Sun is related to why objects fall to Earth when we drop them. The Sun's gravity pullson the planets, just as Earth's gravity pulls down anything that is not held up by some other force and keeps you and me on the ground.
Complete Question
Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?
Answer:
Go-cart A is faster
Explanation:
From the question we are told that
The length of the track is 
The speed of A is 
The uniform acceleration of B is 
Generally the time taken by go-cart A is mathematically represented as
=> 
=> 
Generally from kinematic equation we can evaluate the time taken by go-cart B as

given that go-cart B starts from rest u = 0 m/s
So

=>
=>
Comparing
we see that
is smaller so go-cart A is faster