Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Hello
The final light will be white. In fact, each color of the visible spectrum is an electromagnetic wave with its own specific frequency and wavelength. White, instead, does not have a specific frequency: it is the sum of all the different wavelengths of the visible spectrum. Therefore, when recombining the spectrum of the refracted light all the different frequencies recombine together, and their sum gives white light.
(edited)
C is true, and just one of those has as much mass as about 1,840 electrons.
Its a, metal is a good conductor of heat so yea
Hope this helps :)