Answer:
0 degrees
Explanation:
Let
are two forces. The resultant of two forces acting on the same point is given by :

Where
is the angle between two forces
When
i.e. when two forces are parallel to each other,


When
i.e. when two forces are parallel to each other,


When
i.e. when two forces are parallel to each other,


It is clear that the resultant of two forces acting on the same point simultaneously will be the greatest when the angle between them is 0 degrees. Hence, this is the required solution.
On the whole, the metals burn in oxygen to form a simple metal oxide. Beryllium is reluctant to burn unless it is in the form of dust or powder. Beryllium has a very strong (but very thin) layer of beryllium oxide on its surface, and this prevents any new oxygen getting at the underlying beryllium to react with it.
Answer:

Explanation:
Electrostatic Forces
The force exerted between two point charges
and
separated a distance d is given by Coulomb's formula

The forces are attractive if the charges have different signs and repulsive if they have equal signs.
The problem described in the question locates three point charges in a straight line. The charges have the values shown below


The distance between
and
is

The distance between
and
is

We must find the value of
such that

Applying Coulomb's formula for
is

Now for 

If the total force on
is zero, both forces must be equal. Note that being q2 negative, the force on q3 is to the right. The force exerted by q1 must go to the left, thus q1 must be positive. Equating the forces we have:


Simplfying and solving for 



Answer: B
Explanation: i learned it last year