Answer:
42.6083 mi/h
Explanation:
Given: A car travels 8km in 7 minutes.
To find: Find the speed of the car.
Formula: 
Solution: Since the formula for the speed of an object (which is the car) is speed = distance ÷ time, divide the distance (8km) by the time (7min)
Speed = 42.6083 miles per hour
Answer: The continuation and the last part of the question is (3) Determine the expression for E0 by substitution of r0 into the above equation for EN. What is the equation that represents the expression for E0?
Explanation:
The detailed steps and appropriate derivation and by differentiation is shown in the attachment.
The knowledge of differential calculus is applied.
1. clavicle = collarbone
2. vertebrae = backbone
3. scapula = shoulder blade
4. femur = thigh
5. humerus = upper arm
6. patella = kneecap
7. cranium = skull
8. tibia = lower leg
9. radius/ulna = forearm
10. phalanges = fingers/toes
Answer:
B. 25 m/s/s
Explanation:
Centripetal acceleration is the square of the tangential velocity divided by the radius of curvature.
a = v² / r
Given v = 10 m/s and r = 4 m:
a = (10 m/s)² / 4 m
a = 25 m/s²
Answer:
R = 5.28 103 km
Explanation:
The definition of density is
ρ = m / V
V = m /ρ
Where m is the mass and V the volume of the body
The volume of a sphere is
V = 4/3 π r³
Let's replace
4/3 π r³ = m / ρ
R =∛ ¾ m / ρ π
The mass of the planet is
M = 5.5 Me
R = ∛ ¾ 5.5 Me /ρ π
Let's reduce the density to SI units
ρ = 1.76 g / cm³ (1 kg / 10³ g) (10² cm / 1 m)³
ρ = 1.76 10³ kg / m³
Let's calculate
R = ∛ ¾ 5.5 5.97 10²⁴ / (1.76 10³ pi)
R = ∛ 0.14723 10²¹
R = 0.528 10⁷ m
R = 0.528 104 km
R = 5.28 103 km