Answer:
59.18 kg
Explanation:
use f=ma
f= 580 N
a = 9.8 m/s 2
weigh(m) doesn't change only force(F) changes
Hello! ^^
Welcome to Brainly! Blah-blah
We are so excited, to meet you!
Brainly, is a website for you for answering questions, asking for help! if you need too. Plus, if you answer questions with explanation, you can also become a moderator in here too! But, you are not allow to answer d.umb questions on brainly... Plus, please be careful cause now there is scammers, on brainly... and they may give you a virus... So if you see a question in that don't press that link, just report...
And I hope you, will enjoy in brainly!
Have a great day!
#LearnWithBrainly
Answer:
Jace~
Plus, here is a anime image that might make your day happy. . .
Answer:
f = 878,080 N
Explanation:
mass of pile driver (m) = 2100 kg
distance of pile driver to steel beam (s) = 5 m
depth of steel driven (d) = 12 cm = 0.12 m
acceleration due to gravity (g0 = 9.8 m/s^{2}
calculate the average force exerted on the pile driver by the beam.
- from work done = force x distance
- work done = change in potential energy of the pile driver
- equating the two equations above we have
force x distance = m x g x (s - d)
f x 0.12 = 2100 x 9.8 x (5- (-0.12))
d = - 0.12 because the steel beam went down at we are taking its
initial position to be an origin point which is 0
f = ( 2100 x 9.8 x (5- (-0.12)) ) ÷ 0.12
f = 878,080 N
This is A.) lake. A river is a small amount of water that isn't always fresh water. A stream is too small. And an ocean is made of salt water.
Answer:
Velocity = 4.33[m/s]
Explanation:
The total energy or mechanical energy is the sum of the potential energy plus the kinetic energy, as it is known the velocity and the height, we can determine the total energy.
![E_{M}=E_{p} + E_{k} \\E_{p} = potential energy [J]\\E_{k} = kinetic energy [J]\\where:\\E_{p} =m*g*h\\E_{p} = 4*9.81*0.5=19.62[J]\\E_{k}=\frac{1}{2} *m*v^{2} \\E_{k}=\frac{1}{2} *4*(3)^{2} \\E_{k}=18[J]\\Therefore\\E_{M} =18+19.62\\E_{M}=37.62[J]](https://tex.z-dn.net/?f=E_%7BM%7D%3DE_%7Bp%7D%20%20%2B%20E_%7Bk%7D%20%5C%5CE_%7Bp%7D%20%3D%20potential%20energy%20%5BJ%5D%5C%5CE_%7Bk%7D%20%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%20%3D%204%2A9.81%2A0.5%3D19.62%5BJ%5D%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2A4%2A%283%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D18%5BJ%5D%5C%5CTherefore%5C%5CE_%7BM%7D%20%3D18%2B19.62%5C%5CE_%7BM%7D%3D37.62%5BJ%5D)
All this energy will become kinetic energy and we can find the velocity.
![37.62=\frac{1}{2} *m*v^{2} \\v=\sqrt{\frac{37.62*2}{4} } \\v=4.33[m/s]](https://tex.z-dn.net/?f=37.62%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B37.62%2A2%7D%7B4%7D%20%7D%20%5C%5Cv%3D4.33%5Bm%2Fs%5D)