The full question is:
On a keyboard, you strike middle C, whose frequency is 256 Hz. What is the period of one vibration of this tone?
The period of a vibration is the time it takes for the particle to make one full oscillation. Frequency is by definition number of full oscillations per unit of time.
When the frequency is expressed in Hz that unit of time is one second.
So there is the following relation between frequency and period:

When we plug in the numbers we get:
<u>Answer</u>:
When light passes through an object unchanged, scientists call that process Transmission.
<u>Explanation</u>:
Transmission is the process where all the light that is passed through the material moves via the material without being absorbed. The Transmission depends on the affected radiation.The Transmittance of the medium is defined as the ratio between transmitted radiant power and incident radiant power. The light that is passed through the medium and not reflected will be either scattered or reflected. The light can be transmitted only through transparent or translucent material. Opaque object does not allows transmission of light.
Answer:
The changing magnetic field within the loops of wire creates an electric field that pushes the electrons in the wire through the lamp, briefly lighting it
Explanation:
The GE demonstrates that a voltage, and hence a current, can be generated by plunging a coil of wire into and out of a strong magnet.
Answer:
The expected dynamic error is 0.019
The phase shift is -23.10°C
Explanation:
The explanation is shown on the first uploaded image
A uniform thin solid door has height 2.20 m, width .870 m, and mass 23.0 kg. Find its moment of inertia for rotation on its hinges. Is any piece of data unnecessary? So far, I don't understand how to calculate moments of inertia for things like this at all. I can do a system of particles, but when it comes to any ridgid objects, such as this door or rods or cylinders, I don't get it. So basically I have no idea where to even start with this.
so A