The correct answer from the choices given is the last option. The can from the <span> car will lose the carbon more quickly because there are fewer solute–solvent collisions. The can in the car has a lower temperature than the one in the refrigerator. At low temperature, the solubility of carbon dioxide in the liquid decrease therefore particles would tend to be in the vapor phase and escape from the liquid.</span>
Answer:
The web page of a university
Explanation:
A scientist can be more biased within coming to information about pretty much anything. I have had multiple science teachers who seem more biased on to something else and pretend that they're right just cause they know what they are doing.
Then the university would be a great choice because its controlled by a higher state, then also the consistency of being updated.
The products of reaction are ZnSO4 and H2. Since ZnSO4 is in aqueous form (aq), therefore only H2 and water vapor contributes to the overall total pressure in the system.
Total Pressure = 764 torr = H2 partial pressure + Water partial pressure
Since Water partial pressure is 26.74 torr so,
H2 partial pressure = 737.26 torr = 0.97 atm
Answer:
The correct answer to the question is Option E (Strongly retained analytes will give broad peaks).
Explanation:
The other options are true because:
A. Initial temp = 50 °C
Final temp = 270 °C
Differences in temp = 270 - 50 = 220°C
Rate = 10 °C/minute.
So, at 10 °C/minute,
total of 220°C /10 °C = number of minutes required to reach the final temp.
220/10 = 22 minutes
B. A column has a minimum and maximum use temperature. Solutes that are already retained would remain stationary while temperatures are low. This would only change if there is an increase in temperature. Heat transfers more energy to the liquid which would make the solute interact with the column phase.
C. Weakly retained solutes may contain larger molecules, will separate by absorbing into the solvent early in separation making the mobile phase separates out into its components on the stationary phase.
D. Retained solute's vapor pressure is higher at higher temperatures making it possible for particle to escape more from the solute when the temperature is high than when it is low.