Answer:
A. The model could not explain how alpha particles could be deflected at large angles.
Explanation:
The plum pudding model of the atom was proposed by J. J Thomson. He suggested that that an atom is made up of dense particles of electrons surrounded by positive charges.
From the Gold foil experiment carried out by Ernest Rutherford, he noticed that the bulk of the alpha particles targeted at the foil passed through and a little fraction was heavily deflected back.
Rutherford then presented his nuclear model from here. He suggested a massive, dense and tiny nucleus where the protons and neutrons are located. The space outside the mass is dominated by orbiting electrons.
When two atoms are bonded together, the atom that is LEAST likely to attract electrons to itself is
the atom with the smallest electronegativity

As long as the equation in question can be expressed as the sum of the three equations with known enthalpy change, its
can be determined with the Hess's Law. The key is to find the appropriate coefficient for each of the given equations.
Let the three equations with
given be denoted as (1), (2), (3), and the last equation (4). Let
,
, and
be letters such that
. This relationship shall hold for all chemicals involved.
There are three unknowns; it would thus take at least three equations to find their values. Species present on both sides of the equation would cancel out. Thus, let coefficients on the reactant side be positive and those on the product side be negative, such that duplicates would cancel out arithmetically. For instance,
shall resemble the number of
left on the product side when the second equation is directly added to the third. Similarly
Thus
and

Verify this conclusion against a fourth species involved-
for instance. Nitrogen isn't present in the net equation. The sum of its coefficient shall, therefore, be zero.

Apply the Hess's Law based on the coefficients to find the enthalpy change of the last equation.

The correct answer is<span> C) Water takes long to heat and cool down than other liquids.
It doesn't climb up the sides of a tube any more than other solutions do, and being a universal solvent has nothing to do with radiators. It does however take a long time to heat and cool down since you don't have a 100+ celsius burner to heat it up in an instant.</span>
Answer: Total pressure inside of a vessel is 0.908 atm
Explanation:
According to Dalton's law, the total pressure is the sum of individual partial pressures. exerted by each gas alone.

= partial pressure of nitrogen = 0.256 atm
= partial pressure of helium = 203 mm Hg = 0.267 atm (760mmHg=1atm)
= partial pressure of hydrogen =39.0 kPa = 0.385 atm (1kPa=0.00987 atm)
Thus 
=0.256atm+0.267atm+0.385atm =0.908atm
Thus total pressure (in atm) inside of a vessel is 0.908