I can't answer this question without knowing what the specific heat capacity of the calorimeter is. Luckily, I found a similar problem from another website which is shown in the attached picture.
Q = nCpΔT
Q = (1.14 g)(1 mol/114 g)(6.97 kJ/kmol·°C)(10°C)(1000 mol/1 kmol)
<em>Q = +6970 kJ</em>
The compound name for H3S5 is hydrosulfide sulfanide sulfide
The relative molecular mass of the gas : 64 g/mol
<h3>Further explanation</h3>
Given
Helium rate = 4x an unknown gas
Required
The relative molecular mass of the gas
Solution
Graham's Law

r₁=4 x r₂
r₁ = Helium rate
r₂ = unknown gas rate
M₁= relative molecular mass of Helium = 4 g/mol
M₂ = relative molecular mass of the gas
Input the value :

1s2 2s2 2p2 i hope this helps
Answer:
<u>Oxidation state of Mn = +4</u>
Explanation:
Atomic mass of Mn = 55g/mol
From Faraday's law of electrolysis,
Electrochemical equivalent = 
i.e Z =
=
= 0.0001424 g/C
But Equivalent weight, E = atomic mass ÷ valency = Z × 96,485
⇒
= 0.0001424 × 96,485
<u>∴ Valency of Mn = +4</u>