Answer:
A salt
Explanation:
When an acid and a base are placed together, they react to neutralize the acid and base properties, producing a salt. The H(+) cation of the acid combines with the OH(-) anion of the base to form water. The compound formed by the cation of the base and the anion of the acid is called a salt
Answer:
The atomic mass of gallium (Ga) = <u>69.723 g/mol</u>
Explanation:
Given: Two isotopes of Gallium (Ga) are Gallium-69 (⁶⁹Ga) and Gallium-71 (⁷¹Ga)
<u>For ⁶⁹Ga: </u>
Relative abundance = 60.12% = 60.12 ÷ 100 = 0.6012; Atomic mass = 68.9257 g/mol
<u>For ⁷¹Ga:</u>
Relative abundance = 39.88% = 39.88 ÷ 100 = 0.3988; Atomic mass = 70.9249 g/mol
∴ The atomic mass of Ga = (Relative abundance of ⁶⁹Ga × Atomic mass of ⁶⁹Ga) + (Relative abundance of ⁷¹Ga × Atomic mass of ⁷¹Ga)
⇒ Atomic mass of Ga = (0.6012 × 68.9257 g/mol) + (0.3988 × 70.9249 g/mol) = <u>69.723 g/mol</u>
<u>Therefore, the atomic mass of gallium (Ga) = 69.723 g/mol</u>
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of sodium carbonate and nickel (II) chloride is given as:

Ionic form of the above equation follows:

As, sodium and chloride ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.
Ne is isoelectronic with Na+ ion.
Answer:
a) pH = 4.213
b) % dis = 2 %
Explanation:
Ch3COONa → CH3COO- + Na+
CH3COOH ↔ CH3COO- + H3O+
∴ Ka = 1.8 E-5 = ([ CH3COO- ] * [ H3O+ ]) / [ CH3COOH ]
mass balance:
⇒ <em>C</em> CH3COOH + <em>C</em> CH3COONa = [ CH3COOH ] + [ CH3COO- ]
<em>∴ C </em>CH3COOH = 3.40 mM = 3.4 mmol/mL * ( mol/1000mmol)*(1000mL/L)
∴ <em>C</em> CH3COONa = 1.00 M = 1.00 mol/L = 1.00 mmol/mL
⇒ [ CH3COOH ] = 4.4 - [ CH3COO- ]
charge balance:
⇒ [ H3O+ ] + [ Na+ ] = [ CH3COO- ] + [ OH- ]....is negligible [ OH-], comes from water
⇒ [ CH3COO- ] = [ H3O+ ] + 1.00
⇒ Ka = (( [ H3O+ ] + 1 )* [ H3O+ ]) / ( 3.4 - [ H3O+])) = 1.8 E-5
⇒ [ H3O+ ]² + [ H3O+ ] = 6.12 E-5 - 1.8 E-5 [ H3O+ ]
⇒ [ H3O+ ]² + [ H3O+ ] - 6.12 E-5 = 0
⇒ [ H3O+ ] = 6.12 E-5 M
⇒ pH = - Log [ H3O+ ] = 4.213
b) (% dis)* mol acid = <em>C</em> CH3COOH = 3.4
∴ mol CH3COOH = 500*3.4 = 1700 mmol = 1.7 mol
⇒ % dis = 3.4 / 1.7 = 2 %