It can be an element or a compound
Answer:
The net energy is 2.196 eV
Explanation:
Basically, the energy of an atom increases when it absorbs a photon. In addition, the wavelength of the emitted photon is longer such that the atom absorbed a net energy in the process.
Using:
ΔE = h*c*(1/λ
- 1/λ
)
where:
ΔE is the net energy in eV (electron-volt). 1 eV is equivalent to 1.602*
J.
h = 4.135*
eVs
c = 3*
m/s
λ
= 300 nm = 300*
m
λ
= 640 nm = 640*
m
Thus:
ΔE = 4.135*
eVs*3*
m/s*(
)
ΔE = 4.135*
*3*
*1.77*
eV = 2.196 eV
Look at the letters, 3 would be MMeters
Answer:
The
for the reaction
will be 4.69.
Explanation:
The given equation is A(B) = 2B(g)
to evaluate equilibrium constant for 
![K_c=[B]^2[A]](https://tex.z-dn.net/?f=K_c%3D%5BB%5D%5E2%5BA%5D)
= 0.045
The reverse will be 
Then, ![K_c = \frac{[A]}{[B]^2}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B%5BA%5D%7D%7B%5BB%5D%5E2%7D)
= 
= 
The equilibrium constant for
will be


= 4.69
Therefore,
for the reaction
will be 4.69.