1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
15

while monitoring dopple radar, what are two things meterologists look for that could indicate the formation of a tornado

Chemistry
1 answer:
Komok [63]3 years ago
5 0

Answer:  So when a Doppler radar detects a large rotating updraft that occurs inside a supercell, it is called a mesocyclone. It has smaller, tighter rotation than a mesocyclone.

You might be interested in
Model describe how you would show j.j. thomson's model of the atom using small beads and clay
faltersainse [42]
Make a ball of clay and embed small beads throughout it. The plum pudding model.
5 0
3 years ago
Place each statement in the column of the particle that it best describes.<br> Refer To Photo
MrRa [10]

The options are labelled as:

1     2

3    4

5    6

7    8

Protons: 1, 5, 7

Neutrons: 2, 8

Electron: 3, 4, 6

5 0
3 years ago
The characteristic odor of pineapple is due to ethyl butyrate, a compound containing carbon, hydrogen, and oxygen. Combustion of
gavmur [86]

<u>Answer:</u> The empirical formula for the given compound is C_3H_6O

<u>Explanation:</u>

The chemical equation for the combustion of hydrocarbon having carbon, hydrogen and oxygen follows:

C_xH_yO_z+O_2\rightarrow CO_2+H_2O

where, 'x', 'y' and 'z' are the subscripts of Carbon, hydrogen and oxygen respectively.

We are given:

Conversion factor:  1 g = 1000 mg

Mass of CO_2=6.32mg=0.00632g

Mass of H_2O=2.58g=0.00258g

Mass of compound = 2.78 mg = 0.00278 g

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

  • <u>For calculating the mass of carbon:</u>

In 44g of carbon dioxide, 12 g of carbon is contained.

So, in 0.00632 g of carbon dioxide, \frac{12}{44}\times 0.00632=0.00172g of carbon will be contained.

  • <u>For calculating the mass of hydrogen:</u>

In 18g of water, 2 g of hydrogen is contained.

So, in 0.00258 g of water, \frac{2}{18}\times 0.00258=0.000286g of hydrogen will be contained.

  • Mass of oxygen in the compound = (0.00278) - (0.00172 + 0.000286) = 0.000774 g

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Carbon =\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{0.00172g}{12g/mole}=1.43\times 10^{-4}moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{0.000286g}{1g/mole}=2.86\times 10^{-4}moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{0.000774g}{16g/mole}=4.83\times 10^{-5}moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 4.83\times 10^{-5}mol

For Carbon = \frac{1.43\times 10^{-4}}{4.83\times 10^{-5}}=2.96\approx 3

For Hydrogen  = \frac{2.86\times 10^{-4}}{4.83\times 10^{-5}}=5.92\approx 6

For Oxygen  = \frac{4.83\times 10^{-5}}{4.83\times 10^{-5}}=1

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of C : H : O = 3 : 6 : 1

Hence, the empirical formula for the given compound is C_3H_{6}O_1=C_3H_6O

3 0
3 years ago
Effect of fossil fuel emission on oceans?
BlackZzzverrR [31]
Fossil fuel emissions can create acid rain, which in turn increases the pH of ocean water, harming the organisms in the ocean.<span />
7 0
3 years ago
Calculate the freezing point and boiling point of a solution containing 8.15 g of ethylene glycol (C2H6O2) in 96.3 mL of ethanol
pishuonlain [190]

<u>Answer:</u> The freezing point of solution is -117.54°C and the boiling point of solution is 80.48°C

<u>Explanation:</u>

To calculate the mass of ethanol, we use the equation:

\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}

Density of ethanol = 0.789 g/mL

Volume of ethanol = 96.3 mL

Putting values in above equation, we get:

0.789g/mL=\frac{\text{Mass of ethanol}}{96.3mL}\\\\\text{Mass of ethanol}=(0.789g/mL\times 96.3mL)=75.98g

  • <u>Calculating the freezing point:</u>

Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.

The equation used to calculate depression in freezing point follows:

\Delta T_f=\text{Freezing point of pure solution}-\text{Freezing point of solution}

To calculate the depression in freezing point, we use the equation:

\Delta T_f=iK_fm

Or,

\text{Freezing point of pure solution}-\text{Freezing point of solution}=i\times K_f\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}

where,

Freezing point of pure solution = -114.1 °C

i = Vant hoff factor = 1 (For non-electrolytes)

K_f = molal freezing point elevation constant = 1.99°C/m

m_{solute} = Given mass of solute (ethylene glycol) = 8.15 g

M_{solute} = Molar mass of solute (ethylene glycol) = 62 g/mol

W_{solvent} = Mass of solvent (ethanol) = 75.98 g

Putting values in above equation, we get:

-114.1-\text{Freezing point of solution}=1\times 1.99^oC/m\times \frac{8.15\times 1000}{62g/mol\times 75.98}\\\\\text{Freezing point of solution}=-117.54^oC

Hence, the freezing point of solution is -117.54°C

  • <u>Calculating the boiling point:</u>

Elevation in boiling point is defined as the difference in the boiling point of solution and freezing point of pure solution.

The equation used to calculate elevation in boiling point follows:

\Delta T_b=\text{Boiling point of solution}-\text{Boiling point of pure solution}

To calculate the elevation in boiling point, we use the equation:

\Delta T_b=iK_bm

Or,

\text{Boiling point of solution}-\text{Boiling point of pure solution}=i\times K_b\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ in grams}}

where,

Boiling point of pure solution = 78.4°C

i = Vant hoff factor = 1 (For non-electrolytes)

K_b = molal boiling point elevation constant = 1.20°C/m.g

m_{solute} = Given mass of solute (ethylene glycol) = 8.15 g

M_{solute} = Molar mass of solute (ethylene glycol) = 62  g/mol

W_{solvent} = Mass of solvent (ethanol) = 75.98 g

Putting values in above equation, we get:

\text{Boiling point of solution}-78.4=1\times 1.20^oC/m\times \frac{8.15\times 1000}{62\times 75.98}\\\\\text{Boiling point of solution}=80.48^oC

Hence, the boiling point of solution is 80.48°C

3 0
3 years ago
Other questions:
  • Correct each of the following statements: (a) In the modern periodic table, the elements are arranged in order of increasing ato
    5·1 answer
  • Can you draw the peptide structure at pH 7.0 (including peptide bonds)
    11·1 answer
  • PLEASE PLEAS HELP Which of the following compounds is insoluble in water?
    9·1 answer
  • I WILL GIVE A LOT OF EXTRA POINTS. PLEASE ANSWER ALL OF THEM ​
    7·2 answers
  • This table lists some characteristics of two planets.<br> Which statement is true?
    5·2 answers
  • Which statement best describes the relationship between photosynthesis and cellular respiration?
    6·1 answer
  • Ions Types of Ions Cation Anion 1. H+ 2.O-2 3.Ba2+ 4.Br- 5.Hg2+ 6.Li+ 7.Ca2+ 8.F- 9.S-2 10.Fe3+
    12·1 answer
  • Read everything and do everything for brainliest!
    10·1 answer
  • EgahgrJGRAJGTHEFAHAEHRFAHAERHAFHRHFHRAFHAER
    13·1 answer
  • For the decomposition of dinitrogen pentoxide in carbon tetrachloride solution at 30 °C 2 N2O54 NO2 + O2 the average rate of dis
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!