Any energy transformation involves the loss of some energy as B. Heat.
Answer:
No.
Explanation:
Given that Kevin decides to soup up his car by replacing the car's wheels with ones that have 1.4 times the diameter of the original wheels. Note that the speedometer in a car is calibrated based on the tire's diameter and on the distance the tire covers in each revolution. (a) Will the reading of the speedometer change ?
Considering the formula
V = wr
Where
V = linear speed
W = angular speed
r = radius of the wheel.
But W = 2πrf
Where the the 2 and pi are constant. The radius of the first wheel will be small but counter balance with the larger frequency.
While the radius of the second wheel may be large but it will be of a small frequency.
We can therefore conclude that the reading on the speedometer will not change. Because speedometer will read the linear speed V.
Answer:
this is just a guess bc i only looked at it for 5 seconds but i think 150 m/s
<h3>
Answer:</h3>
800 meters
<h3>
Explanation;</h3>
<u>We are given;</u>
- Speed as 40 m/s
- Time as 20 seconds
We are required to determine the distance traveled
- Speed refers to the rate of change in distance.
- It is given by;
Speed = Distance ÷ time
Rearranging the formula;
Distance = speed × time
In this case;
Distance = 40 m/s × 20 sec
= 800 meters
Thus, the distance traveled by the car is 800 m
<span>The distance between two objects is increased by three times the oringinal distance. Since they were already separated by one time the original distance,
the additional three times the oringinal distance now puts them four times the original distance apart.
Whether we're talking about the gravitational forces of attraction or
the electrical forces of attraction, either one is inversely proportional
to the square of the distance between the objects.
So changing the distance to four times the original distance causes
the forces to become 1/4</span>² as strong as they were originally.
The forces become 1/16 of their original magnitude.<span>
</span>