Well, it depends. Your latitude on Earth--that is, how close you are to the equator--and the time of year make a difference. I'll explain why. Your motion is made up of four pieces: the rotation of the Earth on its axis, the motion of the Earth around the Sun, the Sun's orbit about the center of the galaxy, and the motion of the whole galaxy.
Answer: First, we determine the circumference of the Mars by the equation below.
C = 2πr
Substituting the known values,
C = 2(π)(3,397 km) = 6794π km
To determine the tangential speed, we divide the circumference calculated above by the time it takes for Mars to complete one rotation and that is,
tangential speed = 6794π km / 24.6 hours = 867.64 km/h
Answer:
The number of atoms is 
Explanation:
From the question we are told that
The mass of coin is 
Number of atom in one mole = 
Molar mass of nickel 
Now the relation to obtain the number of atom in the nickel coin is



<span>If the temperature increases in a sample of gas at constant volume, then its pressure increases. The increase in temperature makes the molecule hit the walls of the container faster. The correct option among all the options that are given in the question is the third option or option "c". I hope the answer helps you.</span>
Hello There!
It takes the planet Mars around 24 hours, 37 minutes, 23 seconds to rotate on its axis. This is around the same amount of time that it takes our planet to rotate once on its axis.