Answer:
The distance on the screen between the first-order bright fringes for each wavelength is 3.17 mm.
Explanation:
Given that,
Wavelength of red = 660 nm
Wavelength of blue = 470 nm
Separated d= 0.30 mm
Distance between screen and slits D= 5.0 m
We need to calculate the distance for red wavelength
Using formula for distance

Where, D = distance between screen and slits
d = separation of slits
Put the value into the formula


For blue wavelength,
Put the value into the formula again


We need to calculate the distance on the screen between the first-order bright fringes for each wavelength
Using formula for distance



Hence, The distance on the screen between the first-order bright fringes for each wavelength is 3.17 mm.
Answer:
Explanation:
the same amount of time in both halves of the circle
When the moon faces earth a solar eclipse happens :-)
If "0.3 minute" is correct, then it's 9,543,272 Joules.
If it's supposed to say "0.3 SECOND", then the KE is 2,651 Joules.
Answer:
T = 0.0088 m²/s
Explanation:
given,
initial piezometric elevation = 12.5 m
thickness of aquifer = 14 m
discharge = 28.24 L/s = 0.02824 m³/s
we know

k = 0.629 mm/sec
Transmissibilty
T = k × H
T = 0.629 × 14 × 10⁻³
T = 0.0088 m²/s